期刊文献+

基于卷积神经网络的肺炎检测系统 被引量:4

Pneumonia detection system based on convolutional neural network
下载PDF
导出
摘要 提出一种利用卷积神经网络对胸部X光影像数据进行分析,实现对肺炎这一常见症状进行检测的系统。该方案首先进行图像预处理,然后采用VGG卷积神经网络和改进VGG卷积神经网络分别实现对胸部X光影像的特征提取,得到两种网络对肺炎的检测准确率,最终测试结果显示,改进VGG卷积神经网络在对肺炎检测上具备比VGG网络更好的识别效果,同时,改进VGG网络在标定好的数据集进行训练时能够更快的收敛。通过在公开数据集上进行测试表明,改进VGG卷积神经网络得到了98.5%的准确率,相比于VGG网络提升了2%以上的识别准确率,证明该方案在肺炎识别上具有可行性。 A system that analyzes chest X-Ray image data by using convolutional neural network is proposed to diagnose the common symptom,pneumonia. In this scheme,the image is preprocessed first,and then the features of the image of chest X-Ray are extracted by the VGG convolutional neural network and the improved VGG convolutional neural network respectively to obtain the accuracy rates of pneumonia detection of the two networks. The testing results indicate that the improved VGG convolutional neural network has better identification effect than the VGG convolutional neural network,and has faster convergence while training the demarcated dataset. The results of testing on public data sets show that the pneumonia detection system based on the improved VGG convolutional neural network has got the accuracy of 98.5%,that is,the accuracy is improved more than2% in comparison with the one based on the VGG convolutional neural network,which proves this system is feasible for pneumonia identification..
作者 周进凡 刘宇红 张荣芬 马治楠 葛自立 林付春 ZHOU Jinfan;LIU Yuhong;ZHANG Rongfen;MA Zhinan;GE Zili;LIN Fuchun(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;The Key Laboratory of Public Big Data,Guiyang 550025,China)
出处 《现代电子技术》 北大核心 2019年第23期35-39,共5页 Modern Electronics Technique
基金 贵州省科技计划项目(黔科合平台人才[2016]5707)~~
关键词 卷积神经网络 胸部X光影像 肺炎诊断 图像预处理 VGG 特征提取 convolutional neural network chest X-Ray image pneumonia diagnosis image preprocessing VGG feature extraction
  • 相关文献

参考文献9

二级参考文献24

  • 1尤玉虎,周孝宽.数字图像最佳插值算法研究[J].中国空间科学技术,2005,25(3):14-18. 被引量:40
  • 2SCHNEIDER C,AMJADI A,RICHTER A,et al.Automated lung nodule detection and segmentation[EB/OL].[2010-08-16].http://spie.org/x648.html? product_ id=811985.
  • 3TSENG L Y,HUANG L C.An adaptive thresholding method for automatic lung segmentation in CT images[C] // Proceedings of the 9th IEEE AFRICON.Piscataway,NJ,USA:IEEE,2009:1-5.
  • 4DEHMESHKI J,AMIN H.Segmentation of pulmonary nodules in thoracic CT scans:a region growing approach[J].IEEE Transactions on Medical Imaging,2008,27(4):467-480.
  • 5SHIRAISHI J,LI Qiang,DOI K.Development of a computerized scheme for detection of very subtle lung nodules located in opaque areas on chest radiographs[EB/OL].[2010-08-16].http://spie.org/x648.html? product_ id=652456.
  • 6KUPINSKI M A,CLARKSON E,HESTERMAN J Y.Bias in Hotelling observer performance computed from finite data[EB/OL].[2010-08-16].http://spie.org/x648.html? product_id=707800.
  • 7YAO Jie,BARRETT H H.Predicting human performance by a channelized Hotelling observer model[C] //Proceedings of SPIE Conference in Mathematical Methods in Medical Imaging.San Diego,CA,USA:SPIE,1992:161-168.
  • 8PARK S,BARRETT H H,CLARKSON E,et al.Channelized-ideal observer using Laguerre-Gauss channels in detection tasks involving non-Gaussian distributed lumpy backgrounds and a Gaussian signal[J].J Opt Soc Am:A,2007,24(12):136-150.
  • 9Rafael CG,Richard EW.数字图像处理[M].阮秋琦,阮宇智译.北京:电子工业出版社,2003.
  • 10KRUGLINSKI D J.Visual C++技术内幕[M].潘爱民,王国印,译.北京:清华大学出版社,1999.

共引文献199

同被引文献15

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部