期刊文献+

改进的Faster R-CNN在车辆识别中的应用 被引量:3

Application of improved Faster R-CNN in vehicle recognition
下载PDF
导出
摘要 随着人工智能技术的不断发展,利用深度学习进行车辆识别已经成为智能交通领域的热点。以更快速区域卷积神经网络(Faster R-CNN)模型为基础,利用BIT-Vehicle数据集定义车辆视觉任务,利用改进的困难样本算法加强对图像中远小目标车辆的特征提取,并改进NMS算法的置信度函数,动态调整置信度区间,对实际场景中的车辆图像进行测试。该方法可输入多尺度图像、能自主提取车辆特征,提高模型对小目标的判别能力,减少漏检情况,提升检测精度,加速模型收敛,鲁棒性较强。 With the continuous development of artificial intelligence technology,the application of deep learning for vehicle recognition has become a hotspot in the field of intelligent transportation. On the basis of the faster regions with convolutional neural network(Faster R-CNN)model,the BIT-Vehicle dataset is adopted to define vehicles visual task,the improved hard example algorithm is utilized to enhance the feature extraction of the far small target vehicles in the image,the confidence function of the NMS algorithm is improved,the confidence interval is adjusted dynamically,and the vehicle image in the actual scene is tested. The method can input multi-scale images and automatically extract vehicle features,improve the ability of the model to discriminate small targets, reduce the missed detection, improve the detection accuracy, and accelerate the convergence of the model. The method also has strong robustness.
作者 王宝珠 史龙云 郭志涛 雷瑶 WANG Baozhu;SHI Longyun;GUO Zhitao;LEI Yao(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《现代电子技术》 北大核心 2019年第23期48-52,共5页 Modern Electronics Technique
基金 天津市科技特派员项目(16JCTPJC50200)~~
关键词 车辆识别 智能交通 改进的Faster R-CNN 特征提取 置信度函数改进 实验分析 vehicle recognition intelligent transportation improved Faster R-CNN feature extraction confidence function improvement experiment analysis
  • 相关文献

参考文献2

二级参考文献18

  • 1HUANG Wenhao,SONG Guojie,XIE Kunqing. Deep architec-ture for traffic flow prediction:deep belief networks with multi-task learning [J]. IEEE Transactions on Intelligent Transporta-tion Systems,2014,15(5):2191-2201.
  • 2AHMED S A,COOK A R. Analysis of freeway traffic time-se-ries data by using Box-Jenkins techniques [J]. TransportationResearch Record,1979,722:214-221.
  • 3LEE S,FAMBRO D B. Application of subset autoregressive inte-grated moving average model for short-term freeway traffic volumeforecasting [J]. Transportation Research Record,1999,1678:179-188.
  • 4WILLIAMS B M. Multivariate vehicular traffic flow prediction-evaluation of ARIMAX modeling [J]. Transportation ResearchRecord,2001,1776:194-200.
  • 5KAMARIANAKIS Y,PRASTACOS P. Forecasting traffic flowconditions in an urban network-comparison of multivariate andunivariate approaches [J]. Transportation Research Record,2003,1857:74-84.
  • 6WILLIAMS B M,HOEL L A. Modeling and forecasting vehicu-lar traffic flow as a seasonal ARIMA process:Theoretical basisand empirical results [J]. Journal of Transportation Engineering,2003,129(6):664-672.
  • 7YANG F,YIN Z Z,LIU H,et al. Online recursive algorithmfor short-term traffic prediction [J]. Transportation Research Re-cord,2004,1879:1-5.
  • 8SUN Shiliang,ZHANG Changshui,YU Guoqiang. A Bayesiannetwork approach to traffic flow forecasting [J]. IEEE Transac-tions on Intelligent Transportation Systems,2006,7(1):124-132.
  • 9ZARGARI S A,SIABIL S Z,ALAVI A H,et al. A computa-tional intelligence-based approach for short-term traffic flowprediction [J]. Expert Systems,2012,29(2):124-132.
  • 10DAVIS G A,NIHAN N L. Nonparametric regression and short-term freeway traffic forecasting [J]. Journal of TransportationEngineering,1991,117(2):178-188.

共引文献30

同被引文献50

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部