期刊文献+

基于SAGA-FCM算法的非侵入式负荷监测方法 被引量:6

Non-intrusive load monitoring method based on SAGA-FCM algorithm
下载PDF
导出
摘要 针对现有的非侵入式负荷监测(NILM)方法对小功率设备识别准确率不够,以及监测数据量过大时,准确率下降严重等问题,提出一种新颖的非侵入负荷监测方法。该方法以模糊C均值聚类算法(FCM)为基础,采用差量特征提取法提取任意时刻的特征变化值,引入模拟退火算法(SA)和遗传算法(GA)对聚类过程进行优化,实现了多类型电器负荷的聚类识别。实验数据表明,随着监测数据量的增加,该方法最终目标函数始终小且稳定,具有较好的稳定性和可靠性,适用于NILM大数据监测环境,采用谐波特征后识别准确率有一定的提升。 A novel non-intrusive load monitoring(NILM)method is proposed to solve the problems of low accuracy of lowpower electrical apparatus identification and serious decline of recognition accuracy when the monitoring data volume is excessive. On the basis of the fuzzy C-means algorithm(FCM),the delta feature extraction method is adopted in the method to extract the feature variation value at any time and the simulated annealing algorithm(SA) and genetic algorithm(GA) are introduced to optimize the clustering process. Thus,clustering identification of multiple types of electrical loads is achieved. The experimental data show that the final objective function of this method is always small and stable even if the increase of monitoring data volume, the method has better stability and reliability and is suitable for NILM big data monitoring environment,and the recognition accuracy of this method is improved after harmonic characteristics are adopted.
作者 刘炜 谭兴 周克 马嘉伟 LIU Wei;TAN Xing;ZHOU Ke;MA Jiawei(School of Electrical Engineering,Guizhou University,Guiyang 550025,China;Mingde College of Guizhou University,Guiyang 550025,China)
出处 《现代电子技术》 北大核心 2019年第23期72-76,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(51567005)~~
关键词 监测方法 非侵入负荷监测 差量特征提取 聚类过程优化 SAGA-FCM算法 聚类识别 monitoring method non-intrusive load monitoring delta feature extraction clustering process optimization SAGA-FCM algorithm clustering recognition
  • 相关文献

参考文献9

二级参考文献70

  • 1王建勇,周晓光,廖启征.一种基于中值-模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904. 被引量:22
  • 2陈静,张飞云,姚宁.基于多级中值滤波和小波域HMT的图像去噪[J].现代电子技术,2007,30(14):127-129. 被引量:2
  • 3赵时,张建文,夏云忠,等.基于家用电器启动的非侵入式负荷识别算法的研究[EB/OL].[2012-05-20].http://www.paper.edu.cn/index.php/default/releasepaper/content/201007-546.
  • 4SUZUKI K, INAGAKI S, SUZUKI T, et al. Nonintrusive appliance load monitoring based on integer programming[C]// 2008 SICE Annual Conference, August 20 -22, 2008, Tokyo, Japan: 2742-2747.
  • 5BIKER A J, XIA Xiaohua, ZHANG Jiangfeng. Active power residential non intrusive appliance load monitoring system[C]// The 9th IEEE AFRICON, September 23-25, 2009, Nairobi, Kenya:6p.
  • 6NG S K K, JIAN Liang, CHENG J W M. Automatic appliance load signature identification by statistical clustering [C]// 8th International Conference on Advances in Power System Control, Operation and Management, November 8-11, 2009, Hong Kong, China: 6p.
  • 7HART G W. Nonintrusive appliance load monitoring [J].Proceedings of the IEEE, 1992, 80(12): 1870 -1891.
  • 8RUZZELLI A G, NICOLAS C, SCHOOFS A, et al. Real- time recognition and profiling of appliances through a single electricity sensor[ C ]// 2010 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks, June 21-25, 2010, Boston, USA: 9p.
  • 9SRINIVASAN D, NG W S, LIEW A C. Neural network- based signature recognition for harmonic source identification [J]. IEEE Transon Power Delivery, 2006, 21(1): 398-405.
  • 10DUAN J, CZARKOWSKI D, ZABAR Z. Neural network approach for estimation of load composition[C]// Proceedings of the 2004 International Symposium on Circuits and Systems, May 23 -26, 2004, Vancouver, Canada: 988-991.

共引文献307

同被引文献65

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部