期刊文献+

基于蚁群算法的边缘检测技术组合优化 被引量:3

The combinational optimization for edge detection technology based on ant colony algorithm
下载PDF
导出
摘要 针对图像边缘检测过程中,现有算法存在阈值设定缺乏自适应性、收敛速度较慢、容易陷入局部最优解等问题,通过改进蚁群算法的子块梯度比的求取方式优化算法初始设定,并与扰动因子结合优化蚁群转移规则,再根据蚁群动态情况调整信息素阈值等操作进行组合优化。实验结果表明与现有文献的算法相比,改进后的算法在运算速度上提升2.81%,检测效果上提升12.24%。 In order to solve the problems of lacking of adaptability in threshold setting slowness in convergence speed and falling into local optimization solution in existing algorithms of image edge detection,an improved combinational Optimization is proposed.The new algorithm optimizes the initial setting of the ant colony algorithm by improving the sub-block gradient ratio acquisition method,and then introduces it into the disturbance factor to optimize the ant colony transfer rules,finally adjusts pheromone threshold based on ant colony dynamics.The experimental results show that compared with the algorithm in the existing reference,the improved algorithm improves the processing speed by 2.81%and detection effect by 12.24%.
作者 詹宝容 骆金维 黄炜杰 李杏清 ZHAN Bao-rong;LUO Jin-wei;HUANG Wei-jie;LI Xing-qing(Department of Information Engineering,Guangdong Innovative Technical College,Dongguan 523960,China;Department of Electronics Engineering,Jinan University,Guangzhou 510632,China)
出处 《电子设计工程》 2019年第23期27-31,38,共6页 Electronic Design Engineering
基金 广东省自然科学基金项目(2017GKTSCX112)
关键词 蚁群优化算法 CANNY算法 边缘检测 扰动因子 动态阈值 ant colony optimization algorithm Canny algorithm edge detection disturbance factor
  • 相关文献

参考文献8

二级参考文献92

共引文献168

同被引文献40

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部