期刊文献+

基于自适应独立成分分析的化工过程监测

Chemical process monitoring based on adaptive independent component analysis
下载PDF
导出
摘要 针对独立成分分析(independent component analysis,ICA)方法应用于过程监测时如何选择独立成分(independent component,IC)的问题,提出了自适应独立成分分析(adaptation independent component analysis,AICA)方法。AICA方法首先利用分离矩阵建立关联矩阵,该关联矩阵表示IC的相似性,同时通过核密度估计选择概率密度最小的IC作为特殊独立成分(particular independent component,PIC),再通过关联矩阵选择与PIC具有相似变异特征的几个普通独立成分(common independent components,CICs),最后将PIC与CICs用于构造监测统计量。将AICA方法应用于田纳西-伊士曼(Tennessee Eastman,TE)仿真过程,测试结果表明所提方法对于过程监测是有效的。 In an effort to tackle the problem of how to select independent components(IC)in process monitoring when using independent component analysis(ICA),this paper proposes an adaptation independent component analysis(AICA)method.The AICA method first establishes a correlation matrix by using the separation matrix.The correlation matrix represents the similarities in IC.At the same time,the minimum probability density IC is selected as the particular independent component(PIC)by estimating the nuclear density.Then,by means of the correlation matrix,several common independent components(CICs)with similar variation characteristics to PIC are selected.Finally,PIC and CICs are used to construct monitoring statistics.The AICA method was applied in simulations of the Tennessee Eastman(TE)process.The test results show that the proposed method is an effective means of process monitoring.
作者 陆天驰 吕照民 LU TianChi;LV ZhaoMin(Department of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 200336,China;Department of Rail Transit,Shanghai University of Engineering Science,Shanghai 200336,China)
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期64-71,共8页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 上海市青年科技英才扬帆计划(18YF1409200) 上海工程技术大学人才计划项目—展翅计划
关键词 过程监测 独立成分分析 自适应 挑选独立成分 漏报率 误报率 process monitoring independent component analysis adaptive select independent components non-response ratio false positives ratio
  • 相关文献

参考文献1

二级参考文献11

  • 1刘世成,王海清,李平.基于多向核主元分析的青霉素生产过程在线监测[J].浙江大学学报(工学版),2007,41(2):202-207. 被引量:9
  • 2钟蕾,刘飞.基于独立元分析的数据重构方法及应用[J].系统仿真学报,2007,19(17):4090-4092. 被引量:2
  • 3Yingwei Zhang,Zhiyong Hu.Multivariate process monitoring and analysis based on multi-scale KPLS[J]. Chemical Engineering Research and Design . 2011 (12)
  • 4Li Wang,Hongbo Shi.Multivariate statistical process monitoring using an improved independent component analysis[J]. Chemical Engineering Research and Design . 2009 (4)
  • 5Xuemin Tian,Xiaoling Zhang,Xiaogang Deng,Sheng Chen.Multiway kernel independent component analysis based on feature samples for batch process monitoring[J]. Neurocomputing . 2008 (7)
  • 6Shih-Hsuan Chiu,Chuan-Pin Lu,Dien-Chi Wu,Che-Yen Wen.A histogram based data-reducing algorithm for the fixed-point independent component analysis[J]. Pattern Recognition Letters . 2007 (3)
  • 7Jian Yang,Xiumei Gao,David Zhang,Jing-yu Yang.Kernel ICA: An alternative formulation and its application to face recognition[J]. Pattern Recognition . 2005 (10)
  • 8Gülnur Birol,Cenk ündey,Ali ?inar.A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering . 2002 (11)
  • 9齐咏生,王普,高学金,公彦杰.改进MKPCA方法及其在发酵过程监控中的应用[J].仪器仪表学报,2009,30(12):2530-2538. 被引量:13
  • 10王丽,侍洪波.基于核独立元分析的间歇过程在线监控[J].化工学报,2010,61(5):1183-1189. 被引量:12

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部