期刊文献+

基于语义词向量的自媒体短文本主题建模

Topic modeling of self-media short text based on semantic word vector
下载PDF
导出
摘要 短文本建模的稀疏问题是短文本主题建模的主要问题,文章提出基于词向量的短文本主题建模模型—语义词向量模型(Semantics Word Embedding Modeling,SWEM)。采用半自动的方法对短文本信息进行扩充,对短文本相应词语进行同义词林处理,增加短文本集合中词共现信息,丰富文档内容,推理出较高质量的文本主题结构,解决短文本的词共现信息不足的问题。实验表明,SWEM模型优于LDA、BTM等传统模型。 The sparse problem of short text modeling is the main problem of short text topic modeling.This paper proposes a word-vector based short text topic modeling model SWEM(Semantics word embedding modeling).It uses semi-automatic method to expand short text information,the word in short text is processed with corresponding synonyms of the word,to increase word co-occurrence information in short text set,to enrich document content,so as to infer a high quality text topic structure and to solve the problem of insufficient co-occurrence of words in decisive texts.Experiments show that SWEM model is superior to traditional models such as LDA and BTM.
作者 黄婵 Huang Chan(Ganzhou teachers college,Ganzhou,Jiangxi 341000,China)
出处 《计算机时代》 2019年第12期57-60,共4页 Computer Era
基金 江西省教育厅科学技术研究项目(GJJ151362)
关键词 短文本 主题建模 同义词 SWEM short text topic modeling synonym SWEM
  • 相关文献

参考文献4

二级参考文献66

  • 1徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 2CANTADOR I, CASTELLS P. Extracting muhilayered communities of interest from semantic user profiles: application to group modeling and hybrid recommendations [ J ]. Computers in Human Behavior, 2010, 27 (7) : 1-16.
  • 3NAKAUCHI K, ISHIKAWA Y, MORIKAWA Y, et al. Peer- to-Peer keyword search using keyword relationship [ C ] //Proceedings of the Third International Workshop on Global and P2P Computing. IEEE Computer Society, 2003 : 359-366.
  • 4LIU K, BHADURI K, DAS K, et al. Client-side Web mining for community formation in Peer-to-Peer environments [J]. Sigkdd Explorations, 2006 (8) : 11-20.
  • 5CHMIELEWSKI T L, DANSEREAU D F. Enhancing the recall of text: knowledge mapping training promotes implicit transfer [J] . Journal of Educational Psychology, 1998, 90 (3) .
  • 6QI Xinmin, UDDIN M N, JO Geun-sik . The WordNet based semantic relationship between tags in folksonomies [ C ] //The 2nd International Conference on Computer and Automation Engineering (ICCAE) . IEEE, 2010:815 - 819.
  • 7YEFERNY T, AROUR K. Learning peer selection: a query routing approach for information retrieval in P2P systems [ C ] //Fifth International Conference on Intemet and Web Applications and Services, Barcelona, Spain, 2010 : 235-241.
  • 8CRAMPES M, RANWEZ S, VILLERD J, et al. Concept maps for designing adaptive knowledge maps [ J ]. Information Visualization, 2006, 5 (3) : 211-224.
  • 9JETTER A. Knowledge integration [ M ]. [ S. l. ] : Physica- Verlag, 2006: 77-90.
  • 10Lin Fu-ren, Yu Jen-hung. Visualized cognitive knowledge map integration for P2P networks [J]. Decision Support Systems, 2009 (46) : 774-785.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部