期刊文献+

一种用户偏好的美学图像推荐方法 被引量:2

User-specific method for aesthetic images recommendation
下载PDF
导出
摘要 在众多的图像信息资源中快速、有效地寻找用户最喜欢的图像,提出了一种用户偏好的美学图像推荐方法,通过使用深度卷积神经网络提取图像的深层特征,并经过SVMrank后得到一个图像排序得分,同时使用手工标记的图像美学因素(如色调法、图像组合规则、清晰度以及简洁性)计算并得到图像的美学特征,得到一个美学得分,最后进行加权交叉验证得到一个令用户满意的推荐结果。通过实验表明该算法为一种有效的美学偏好推荐方法。 To quickly and effectively find the user’s favorite image in many image information resources,this paper proposed a user-appreciated aesthetic image recommendation method,which used the deep convolutional neural network to extract the deep features of the image,and obtained an image sorting score after SVMrank,while using hand-marked image aesthetic factors( such as hue method,image combination rule,definition and simplicity) calculated and obtained the aesthetic characteristics of the image and an aesthetic score. Finally it performed weighted cross-validation to obtain a recommendation result that was satisfactory to the user. Experiments show that the algorithm is an effective recommendation method for aesthetic preferences.
作者 许永波 苏士美 樊隆庆 Xu Yongbo;Su Shimei;Fan Longqing(School of Electrical Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第12期3853-3856,共4页 Application Research of Computers
基金 河南省科技攻关项目(172102310393)
关键词 深度卷积神经网络 美学规则 用户偏好 deep convolution neural network aesthetic rules user preferences
  • 相关文献

参考文献5

二级参考文献163

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献875

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部