期刊文献+

基于LSTM-A深度学习的专利文本分类研究 被引量:5

Patent Text Classification based on Long Short-Term Memory Network and Attention Mechanism
下载PDF
导出
摘要 针对专利文本采用层级细分类低层级文本间相似度高、文本特征难以区分的特性,提出了一种LSTM-A文本分类模型。该模型使用LSTM网络对输入序列进行编码,并引入注意力机制对不同作用的文本特征分配不同权重,最后使用incopat专利数据库的专利文本数据集进行方法的有效性验证。实验表明,该模型可以有效提升高相似度专利文本的分类准确率。 Aiming at the feature that patent documents use hierarchical fine classification and low-level text with high similarity and difficult to distinguish text features,an LSTM-A text classification model is proposed.The model uses the LSTM network to encode the input sequence,and introduces attention mechanisms to assign different weights to the text features with different effects.Finally,the patent text dataset of the incopat patent database is used to verify the validity of the method.Experiments indicate that this model can effectively improve the classification accuracy of patent documents with high similarity.
作者 薛金成 姜迪 吴建德 XUE Jin-cheng;JIANG Di;WU Jian-de(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming Yunnan 650500,China;Institute of Intellectual Property Development,Kunming University of Science and Technology,Kunming Yunnan 650500,China;Computing Center,Kunming University of Science and Technology,Kunming Yunnan 650500,China)
出处 《通信技术》 2019年第12期2888-2892,共5页 Communications Technology
关键词 专利文本 文本分类 长短期记忆网络 注意力机制 patent text text classification LSTM attention mechanism
  • 相关文献

参考文献5

二级参考文献26

  • 1Bengio Y,Ducharme R, Vincent P. A neural probabilistic language model[ J]. Journal of Machine Learning Research,2003,3(7) :1 137-1 155.
  • 2Michael U G, AapoHyvrinen. Noise-contrastive estimation of unnormalized statistical models,with applications to natural imagestatistics[ J] ? The Journal of Machine Learning Research,2012,13( 2) ;307-361.
  • 3Tomas M,Chen K,Corrado G. Efficient estimation of word representations in vector space[ EB/OL].( 2013-08-18) [ 2013-09-07]http : / / arxiv. org/ abs/1301.3781.
  • 4Bengio Y,LeCun Y. Scaling Learning Algorithms Towards AI [ M ]//Large-Scale Kernel Machines. Cambridge: MIT Press,2007.
  • 5Mikolov T, Karafi M, Burget L, et al. Recurrent neural network based language model [ C]//Proceedings of Interspeech.Chiba,Japan:MIT Press,2010: 131 -138.
  • 6Mikolov T,Ilya S,Kai C,et al. Distributed representations of words and phrases and their compositionality[EB/OL]. [2013-10-16]http:// arxiv.org/ abs/1310.4546.
  • 7Elman J. Finding structure in time[ J]. Cognitive Science, 1990,14(7) : 179-211.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by back-propagating errors[ J]. Nature, 1986,323(9) :533-536.
  • 9Andriy M,Yee W T. A fast and simple algorithm for training neural probabilistic language models[ EB/OL] .(2009-10-12)[2012-06-10] http : / / arxiv. org/ftp/arxiv/papers/12061.
  • 10Frederic M, Yoshua B. Hierarchical probabilistic neural network language model [ C ] //Proceedings of the International Work-shop on Artificial Intelligence and Statistics. Barbados : MIT Press, 2005 : 246-252.

共引文献155

同被引文献36

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部