期刊文献+

左右转向驾驶行为脑功能网络关联性分析 被引量:2

Correlation analysis of EEG functional connectivity during driving behavior:turning left and right
下载PDF
导出
摘要 为了探讨驾驶左右转向行为过程中脑功能网络关联性与脑电位变化规律,采用无线惯性运动捕捉系统和脑电信号采集设备,同时获得驾驶员脑电信号和左右转向驾驶行为过程中驾驶员手臂姿态数据,利用Pearson相关性方法分析驾驶员脑电信号特征与驾驶员左右转向行为的关系。建立实际驾驶过程中左右转向行为的脑功能网络关联图谱,分析左右转向过程中脑功能区电位的变化规律,实验结果表明驾驶过程中左右转向行为所引起的脑电位变化情况与想象运动过程中脑电位变化情况相同。 To explore intrahemispheric cortico-cortical EEG functional connectivity and the change rule of neuroelectricity during the left and right turning behavior,wireless inertial motion capture system and EEG signal collecting device were used to simultaneously obtain the data of EEG signals and arm joint acceleration from driving behavior,Pearson correlation method is applied to analyze the relationship between the characteristics of driver’s EEG and left and right turning behavior.The brain functional network correlative graph is established during real driving process,the electric potential change rule of brain functional region during left and right turning behavior is analyzed,the experimental results indicate that the neuroelectricity changes of left and right turning during driving process are the same with the changes during imagined movements.
作者 齐凯 张琨 纪俐 QI Kai;ZHANG Kun;JI Li(Quality Department,Brilliance Auto Group Holdings Co.,Ltd,Shenyang 110141,China;Electrical Department,Brilliance Auto Group Holdings Co.,Ltd,Shenyang 110141,China;School of Mechanical Engineering,Shenyang University Technology,Shenyang 110870,China;School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang,110136)
出处 《沈阳航空航天大学学报》 2019年第5期42-47,共6页 Journal of Shenyang Aerospace University
关键词 相关性分析 左右转向 脑电信号 脑功能网络 小波包分解 EEG turning left and right driving behavior correlation functional connectivity wavelet packet transform
  • 相关文献

参考文献4

二级参考文献85

  • 1游荣义,陈忠.基于小波变换的盲信号分离的神经网络方法[J].仪器仪表学报,2005,26(4):415-418. 被引量:13
  • 2VIRTS J. The third international meeting on brain-computer interface technology: making a difference [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2006,14 ( 2 ) : 126-127.
  • 3VAUGHAN T M. Brain-computer interface technology: a review of the second international meeting [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2003, 11 (2) : 94-109.
  • 4WOLPAW J R, BIRBAUMER N, HEETDERKS W, et al. Brain-computer interface technology: a review of the first international meeting [ J ]. IEEE Trans. Rehabil. Eng. , 2000,8(2) :164-173.
  • 5WOLPAW J R, BIRBAUMER N, MCFARLAND, et al. Brain-computer interface for communication and control [ J ]. Clinical Neurophysiology, 2002,113 (6) :767-791.
  • 6BLANKERTZ B, MULLER K R, et al. The BCI competition III: validating alternative approaches to actual problems [ J ]. IEEE Trans Neural Syst. Rehabil. Eng., 2006,14 (2) : 153-159.
  • 7BLANKERTZ B, MULLER K R, CURIO G, et al. BCI competition 2003--progress and perspectives in detection and discrimination of EEG single trials [ J ]. IEEE Trans. Biomed. Eng. , 2004,51 (6) :1044-1051.
  • 8PFURSTCHELEER G, L da SILVA FH. Event-related EEG/MEG synchronization and desynchronizaiton: basic principles [ J ]. Clinical Neurophysiology, 1999, 110 (11) :1842-1857.
  • 9PFURSTCHELLER G, NEUPER C. Motor imagery and direct brain-computer communication [ J ]. Proc IEEE, 2001,89(7) :1123-1134.
  • 10YANG B H, YANA G ZH, YAN R G, et al. Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition [ J ]. Medical Engineering & Physics, 2007,29( 1 ) :48-53.

共引文献117

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部