期刊文献+

烧结温度对生物医用纳米Ti-15Mo合金组织和摩擦学性能的影响(英文)

Effect of sintering temperature on structure and tribological properties of nanostructured Ti-15Mo alloy for biomedical applications
下载PDF
导出
摘要 研究烧结温度(1073~1373 K)对具有纳米结构的球磨β型Ti-15Mo合金结构和摩擦学性能的影响。通过多种技术对试样进行表征,如X射线衍射分析(XRD)、电子扫描电镜(SEM)和球盘式往复摩擦试验机等;采用不同载荷(2、8和16 N)进行磨损试验。结果表明,随着烧结温度的升高,合金的平均孔径和晶粒尺寸不断减小,在1373 K时分别达到最低值:4 nm和29 nm,1373 K烧结样品的相对密度高达97.0%。此外,烧结温度越高,试样的相对密度越大、硬度越高、弹性模量越高;1373 K烧结试样由于其较低的闭孔率导致摩擦因数和磨损率也较低。 The effect of sintering temperature(1073?1373 K)on the structural and tribological properties of nanostructured ballmilledβ-type Ti?15Mo samples was investigated.The prepared samples were characterized using various apperatus such as X-ray diffractometer,scanning electron microscope(SEM)and ball-on-plate type oscillating tribometer.Wear tests were conducted under different applied loads(2,8 and 16 N).Structural results showed that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach the lowest values of 4 nm and 29 nm at 1373 K,respectively.The relative density of the sintered sample at 1373 K was as high as 97.0%.Moreover,a higher sintering temperature resulted in higher relative density,greater hardness and elastic modulus of the sample.It was observed that both the friction coefficient and wear rate were lower in the sample sintered at 1373 K which was attributed to the closed porosity.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2310-2320,共11页 中国有色金属学报(英文版)
关键词 TI-15MO 磨损 摩擦行为 纳米摩擦 烧结 生物医用 Ti-15Mo wear tribological behaviour nanotribology sintering biomedical applications
  • 相关文献

参考文献3

二级参考文献27

  • 1F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J.D.H. Paul, Adv. Eng. Mater. 2, 699 (2000).
  • 2J. Aguilar, A. Schievenbusch, O. Kattlitz, Intermetallics 19, 757 (2011).
  • 3H. Clemens, S. Mayer, Adv. Eng. Mater. 15, 191 (2013).
  • 4X.H. Wu, Intermetallics 14, 1114 (2006).
  • 5K.J. Leonard, V.K. Vasudevan, Intermetallics 8, 1257 (2000).
  • 6R.M. Imavey, V.M. Imayev, M. Oehring, F. Appel, Intermetallics 15, 451 (2007).
  • 7Y.W. Kim, S.L. Kim, D. Dimiduk, C. Woodward, Gamma Titanium Aluminides eds. Y.W. Kim, D. Morris, R. Yang, and C. Leyens (TMS, Warrendale, PA, 2008) p. 215.
  • 8V. Imayev, T. Oleneva, R. Imayev, H.J. Christ, H.J. Fecht, Intermetallics 26, 91 (2012).
  • 9G.H. Liu, X.Z. Li, Y.Q. Su, D.M. Liu, J.J. Guo, H.Z. Fu, J. Alloys Compd. 541, 275 (2012).
  • 10X.F. Ding, J.P. Lin, L.Q. Zhang, H.L. Wang, G.J. Hao, G.L. Chen, J. Alloys Compd. 506, 115 (2010).

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部