摘要
本文利用二项式残数表示方法生成(2+1)-维超动力系统,利用这些系统得到一个新的(2+1)-维超NLS-MKdV族,它能约化为超非线性Schrodinger方程.特别地得到两个具有重要物理应用的结果,一个是(2+1)-维超可积耦合方程,另一个是(2+1)-维扩散方程.最后,利用超迹恒等式给出了新(2+1)-维超可积系统的超Hamilton结构.
In the article,we make use of the binormial-residue-representation(BRR)to generate(2+1)-dimensional super dynamical systems.By using these systems,a new(2+1)-dimensional super NLS-MKdV hierarchy is deduced,which can be reduced to super nonlinear Schrodinger equation.Especially,two main results are obtained which have important physical applications.One of them is a set of(2+1)-dimensional super integrable couplings,the other one is a(2+1)-dimensional diffusion equation.Furthermore,Super trace identity is used to furnish the super Hamiltonian structures for the new(2+1)-dimensional super integrable system.
作者
魏含玉
张燕
夏铁成
WEI Han-yu;ZHANG Yan;XIA Tie-cheng(College of Mathematics and Statistics,Zhoukou Normal University,Zhoukou 466001;Department of Mathematics,Shanghai University,Shanghai 200444)
出处
《工程数学学报》
CSCD
北大核心
2019年第6期708-720,共13页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(11547175)
the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education(2017GGJS145)