摘要
为获得给定范围的冷滚打花键表面粗糙度加工参数的最优区间,以渐开线花键为研究对象,开展冷滚打花键表面粗糙度试验。构建冷滚打花键表面粗糙度指数函数经验模型,分析冷滚打花键表面粗糙度对加工参数的灵敏度,确定冷滚打花键加工参数的稳定和非稳定域,研究冷滚打花键表面粗糙度试验结果,对确定的稳定与非稳定域进行优选。研究结果表明:表面粗糙度对滚打轮转速的变化最敏感,对工件进给量的变化敏感较弱;滚打轮转速的优选范围为2032~2258 r·min^-1,工件进给速率的优选范围为21~35 mm·min^-1。研究成果为控制冷滚打花键表面粗糙度提供了理论基础和试验依据。
In order to obtain the optimal range of surface roughness processing parameters for cold roll-beating spline in a given range,for the involute spline,the surface roughness test of cold roll-beating spline was carried out,and the exponential function empirical model of surface roughness for cold roll-beating spline was constructed.Then,the sensitivity of surface roughness for cold roll-beating spline to processing parameters was analyzed,and the stable and unsteady domains of cold roll-beating spline processing parameters were determined.Furthermore,the results of surface roughness test for cold roll-beating spline were analyzed,and the stable and unstable domains determined were optimized.The results show that the surface roughness is most sensitive to the changes of rotational speed of rolling wheel and is less sensitive to the changes of feeding rate of workpiece,and the preferred ranges of the rotational speed of rolling wheel and the feeding rate of workpiece are 2032-2258 r·min-1 and 21-35 mm·min-1 respectively.The research results provide theoretical basis and experimental basis for the control of surface roughness for cold roll-beating spline.
作者
朱其萍
徐红玉
刘飞
王晓强
崔凤奎
姚国林
尹丹青
Zhu Qiping;Xu Hongyu;Liu Fei;Wang Xiaoqiang;Cui Fengkui;Yao Guolin;Yin Danqing(School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China;Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province,Luoyang 471003,China;School of Materials Science&Engineering,Henan University of Science and Technology,Luoyang 471023,China)
出处
《锻压技术》
CAS
CSCD
北大核心
2019年第11期86-90,共5页
Forging & Stamping Technology
基金
国家自然科学基金资助项目(51475146,U1804145)
关键词
冷滚打花键
表面粗糙度
指数函数经验模型
参数敏感性
参数稳定域
加工参数区间
cold roll-beating spline
surface roughness
exponential function empirical model
parameter sensitivity
parameter stability domain
processing parameter interval