摘要
为了实现哑铃动作分类识别的目标,在哑铃上加装惯性传感器模块,通过采集哑铃锻炼过程中的运动信号,经信号标准化、滤波、基于初始静态量周期分割预处理后,提取侧平举、前平举、反握弯举、锤式弯举、弯举5种哑铃动作的特征向量,使用改进的Relief F特征选择算法,选择最优特征向量,采用基于平衡决策树的支持向量机对不同的哑铃动作进行分类识别。通过在实验室自主研发的哑铃动作识别系统上进行测试,结果表明:系统能够在单个哑铃动作周期内对哑铃动作进行识别,且识别率可达90%以上,为提供更加个性化的哑铃动作指导奠定基础。
In order to achieve the goal of dumbbell movement classification and recognition,an inertial sensor module was installed on the dumbbell.Through collecting the motion signals during the dumbbell exercise,the eigenvector of five kinds of dumbbell movement,such as flat lifting,counter-grip bending,hammer bending,and curling were extracted after signal standardization,filtering and periodic segmentation based on initial static variables.The improved ReliefF feature selection algorithm was used to select the optimal eigenvector and the support vector machine based on balanced decision tree was used to classify and recognize different dumbbell movements.Through testing on the dumbbell motion recognition system independently developed in the laboratory,the results show that the system can recognize the dumbbell movement within a single dumbbell movement cycle,and the recognition rate can reach more than 90%,which lays the foundation for providing more personalized dumbbell action guidance.
作者
刘国平
王南星
周毅
汪文博
唐慜越
LIU Guo-ping;WANG Nan-xing;ZHOU Yi;WANG Wen-bo;TANG Min-yue(School of Mechanical and Electrical Engineeriing,Nanchang Univesity,Nanchang 330031,China)
出处
《科学技术与工程》
北大核心
2019年第32期219-224,共6页
Science Technology and Engineering
基金
国家自然科学基金(61263045)资助
关键词
哑铃
动作分类识别
初始静态量周期分割
改进的ReliefF特征选择算法
支持向量机
dumbbell
motion classification and recognition
initial static period segmentation
improved ReliefF feature selection algorithm
support vector machine