期刊文献+

人工智能决策系统在烧伤领域应用的主要瓶颈与解决途径 被引量:1

Main bottlenecks and solutions of artificial intelligence decision system in burn field
原文传递
导出
摘要 人工智能决策进入临床应用面临着3个瓶颈:烧伤医疗大数据、深度学习和医学伦理。如何在较长时间采集过程中保持数据稳定并选取科学方法加以分析与评判;机器人深度学习,学习什么与分析什么、如何克服人工智能机器与医师培养的长期性差异;在大数据与人工智能迅速发展形势下伦理短板日益体现。解决这3个问题的主要途径:应主动与数据科学家共同搭建数据模型平台,并制定数据采纳基本线路图,与此同时,由全国烧伤委员会制定大数据及人工智能的伦理规则刻不容缓。 Artificial intelligence decision-making faces 3 bottlenecks before it goes into burn treatment:big data,deep learning and medical ethics.How to maintain data stabiliy in long-term acquisition and select scientific methods for analysis and judgement.Which kinds of material should be studied and analyzed by deeping learning.How to overcome the long-term difference between artificial intelligence machine and doctor training.Under the situation of rapid development of big data and artificial intelligence,the ethical shortcomings are increasingly reflected.The main way to solve the 3 problems is:the initiative to build a data model platform together with data scientists should be taken,and the basic circuit diagram of data adoption should be developed.Meanwhile,it is urgent for the national committee of burns to formulate the ethical rules of big data and artificial intelligence.
作者 张勤 Zhang Qin(Department of Burns and Plastic Surgery,Ruijin Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200025,China)
出处 《中华损伤与修复杂志(电子版)》 CAS 2019年第6期406-409,共4页 Chinese Journal of Injury Repair and Wound Healing(Electronic Edition)
基金 国家自然科学基金面上项目(81971832)
关键词 烧伤 人工智能 数据说明 统计 问题解决 Burns Artificial intelligence Data interpretation statistical Problem solving
  • 相关文献

参考文献2

共引文献8

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部