期刊文献+

导入走进高等代数课堂

下载PDF
导出
摘要 本文根据高等代数的学科特点,对课堂导入的重要性、导入方法及导入注意事项进行分析和探讨,得出了相对合理的导入方法,使高等代数课堂更高效.
作者 赵彦玲
出处 《数学学习与研究》 2019年第21期21-21,23,共2页
  • 相关文献

参考文献3

二级参考文献23

  • 1Heath T. A History of Greek Mathematics [M]. New York :Dover, 1981. Vol.1, 346; Vol.2, 384.
  • 2Maltese G. On the Relativity of Motion in Leonhard Euler's Science [J]. Arch. Hist. Exact Sci. 2000(54): 319-348.
  • 3Caparrini S. The Discovery of the Vector Representation of Moments and Angular Velocity [J].Arch. Hist. Exact Sci., 20(12 (56) : 151 - 181.
  • 4Crowe M.J. A History ofVectorAnalysis [M]. New York, Dover, 1%7:3, 52, 142,152.
  • 5Lewis A. The Influence of Grassmann' s Theory of Tides on the Ausdehnungslehre. Hermann C~tther Grassmann ( 1809- 1877) : Visionary Mathematician, Scientist and Neohumanist Scholar: Papers from A Sesquicentennial Conference [M]. Boston: Kluwer Academic Publishers, c1996:29- 35.
  • 6Grassmann. H. A new Branch of Mathematics: the "Ausdehnungslehre" of 1844 and Other Works [ M], Translated by L. C. Kannenberg. Chicago: Open Court, 1995:9- 295.
  • 7Grassmann H. Extension Theory [M]. Translated by L. C. Kannenberg. American Mathematical Society: London Mathematical Society, 2000:93 - 121, 4- 5.
  • 8Konners J.P. Mobius on the Barycentric Calculus. A source Book in Mathematics [ M] ,New York: McGraw- Hill Book Company, inc., 1929: 670 - 676.
  • 9Hankins T L. Sir William Rowan Hamilton [M]. Baltimore and London:The Johns Hopkins University Press, 1980:247 - 301.
  • 10Tait P.G. An Elementary Treatise on Quaternions(3rd ed.) [M], Cambridge: Cambridge Univ. Press: 1890.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部