摘要
研究了Clifford分析中弱奇异积分算子和以弱奇异积分算子的奇点为积分变量的带参量的Cauchy型奇异积分算子在Liapunov闭曲面上的换序问题.首先证明了相关的奇异积分的性质,并利用这些性质证明了两个累次积分是有意义的,然后将积分区域分为几部分,从而将积分算子分为带有奇性的部分和不带奇性的部分.证明了带有奇性的部分的极限是零,不带奇性的部分相等.这样就证明了弱奇异积分算子和以弱奇异积分算子的奇点为积分变量的Clifford分析中超正则函数的拟Cauchy型奇异积分算子的换序公式.
It studies the transformation problem of a weakly singular integral with the Cauchy type singular operators whose singular point is the integral variable of the weakly singular integral on Liapunov closed surface in Clifford analysis. Firstly, it proves the nature of relevant singular integrals and then it proves that the two iterated integrals are well defined by using that nature. Next, it divides the integral domain into several parts. Naturally, the integral operators are grouped into two parts.One is with the singular integrals and the other is with non-singular operators, and it proves that the limit of the part with the singular operator is operators is zero and the part without singularity are equal. Thus, it proves the transformation formula of a weakly singular integral with the Cauchy type singular operators whose singular point is the integral variable of the weakly singular integral.
作者
黄亚改
史海盼
乔玉英
HUANG Yai-Gai;SHI Hai-Pan;QIAO Yu-Ying(College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang 050024,China)
出处
《高校应用数学学报(A辑)》
北大核心
2019年第4期461-472,共12页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11571089
11871191)
河北省自然科学基金(A2016205218)