期刊文献+

基于模型学习的OpenVPN系统脆弱性分析 被引量:4

Vulnerability Analysis of OpenVPN System Based on Model Learning
下载PDF
导出
摘要 OpenVPN在现实网络中有广泛应用,对其安全性进行评估具有重要的现实意义.基于自动机理论中模型学习的方法,利用协议状态模糊测试的技术对OpenVPN系统进行黑盒测试分析,自动化推演出目标OpenVPN系统的状态机.提出了状态机时间压缩模型并进行冗余状态和迁移化简,可以准确得到协议状态机中的行为特征.发现了多条期望行为路径外的特别行为路径及可能的安全隐患,为OpenVPN的安全性评估提供了新的思路与方法,同时对类似缺少协议规范但应用广泛的安全协议的内部设计细节分析具有重要参考意义. OpenVPN is widely used in the real network,the assessment of its security has important practical significance.In this study,technology of state fuzzing is used to carry out black box test on OpenVPN implementation to infer state machine of the target system automatically based on model learning method in automata theory.Time compression model is proposed and state machine of OpenVPN is simplified to remove the redundant states and transitions.Then,the behavior characteristics of the protocol state machine will be obtained accurately to discover a number of special behavior paths and potential security risks outside the expected behavior path.It provides a new idea for the security evaluation of OpenVPN and has important significance for obtaining the internal design details of similar security protocols with little specification but widely used.
作者 申莹珠 顾纯祥 陈熹 张协力 卢政宇 SHEN Ying-Zhu;GU Chun-Xiang;CHEN Xi;ZHANG Xie-Li;LU Zheng-Yu(Information Engineering University,Zhengzhou 450001,China;He’nan Key Laboratory of Network Cryptography Technology,Zhengzhou 450001,China)
出处 《软件学报》 EI CSCD 北大核心 2019年第12期3750-3764,共15页 Journal of Software
基金 国家自然科学基金(61502533) 河南省自然科学基金(162300410335)~~
关键词 OPENVPN 模型学习 状态模糊测试 脆弱性分析 时间压缩模型 OpenVPN model learning protocol state fuzzing vulnerability analysis and detection time compression model
  • 相关文献

参考文献2

二级参考文献21

  • 1WANG Yipeng, ZHANG Zhibin, YAO Danfeng, et al. Inferring protocol state machine from network traces : a probabilistie approach [ C]//ACNS' 1I Pro- ceedings of the 9th International Conference on Ap- plied Cryptography and Network Security. Berlin Heidelberg: Springer-Verlag, 2001 : 1-18.
  • 2CHO C,DOMAGOJ B,SHIN E, et al. Inference and analysis of formal models of botnet command and con- trol protocols[C]//ACM Conference on Computer and Communications Security (CCS), Chicago: ACM, 2010:426-439.
  • 3ANGLUIN D. Learning regular sets from queries and counterexamples [J]. Information and Computation,1987, 75(2):87-106.
  • 4BOSSERT G, GUIHERY F. Security evaluation of communication protocols in common criteria[R]. Par- isICCC,2012.
  • 5DUPONT P, LAMBEAU B, DAMAS C, et al. The QSM algorithm and its application to software behav- ior model induction[J]. Applied Artificial Intelligence, 2008, 22(1) :77-115.
  • 6PAN Fan, WU Lira, HONG Zheng, et al. Icefex: pro- tocol format extraction from il-based concolic execution [J]. KSII Transactions on Internet and Information Systems (TIIS), 2013,7(3) : 576-599.
  • 7Wikipedia Contributors.Finite state machine[EB/OL]. (2013-03-14) [ 2014-09-02 ]. http://en, wikipedia, org/ wiki/Finite- state_machine.
  • 8GOLD E M. Language identification in the limit[J]. Information and Control, 1967,10 (5): 447-474.
  • 9LANG K,PEARLMUTTER B, PRICE R. Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm[C]//Proeeed- ings of the 4th International Colloquium on Grammati- cal Inference.London : Springer-Verlag, 1998 : 1-12.
  • 10JONATHAN B. RFC821 :Simple Mail Transfer Proto- col IS]. Marina Del Rey: The Internet Engineering Task Force, 1982.

共引文献13

同被引文献14

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部