期刊文献+

PCANet下的遮挡定位人脸识别算法 被引量:9

Face Recognition Algorithm of Occlusion Location Based on PCANet
下载PDF
导出
摘要 自然环境中的人脸图像大部分带有遮挡,这对于人脸识别一直是巨大的挑战,用于人脸识别的主流深度模型对于遮挡人脸图片并不具有特别好的识别性能。针对深度模型由于遮挡的存在以及遮挡位置不确定所导致的识别率下降的问题,提出一种结合深度学习和特征点遮挡检测的PCANet下的遮挡定位人脸识别算法。分类器用于关键点检测,使用PCANet深度学习模型进行特征提取,形成支持向量机(SVM)训练模型组。遮挡判别分类器定位遮挡,结合特征模型组完成有遮挡人脸识别任务,并且对于表情变化有很强的鲁棒性。实验结果表明,该算法对于常见遮挡类型取得了非常好的效果,对于大面积遮挡的极端类型也具有很高的识别率。 Most face images taken from natural environment have occlusion,which has always been a huge challenge for face recognition.The mainstream deep model used for face recognition does not have particularly good identification performance for occlusion of face images.In order to solve the problem that the recognition rate decreases because occlusion exists and the occlusion position is uncertain for deep model,this paper proposes a face recognition algorithm of occlusion location based on PCANet(principal components analysis network),which combines deep learning and feature point occlusion detection.Classifier is used for key point detection,and PCANet deep learning model is used for feature extraction to form SVM(support vector machine)training model group.The occlusion discrimination classifier locates occlusion,combines the group of feature model to complete the occlusion face recognition task,and has strong robustness to facial expression changes.The experimental results show that the algorithm has achieved very good results for common occlusion types,and the extreme types of largearea occlusion also have a high recognition rate.
作者 郭伟 白文硕 曲海成 GUO Wei;BAI Wenshuo;QU Haicheng(College of Software,Liaoning Technical University,Huludao,Liaoning 125000,China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第12期2149-2160,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金青年基金项目No.41701479 辽宁省自然科学基金No.20180550529~~
关键词 深度学习 关键点 遮挡判别 模型组 人脸识别 deep learning key points occlusion discrimination group of model face recognition
  • 相关文献

参考文献7

二级参考文献47

  • 1张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 2Wright J,Yang A Y,Ganesh A. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.doi:10.1109/TPAMI.2008.79.
  • 3Yang M,Zhang L,Yang J. Metaface learning for sparse representation based face recognition[A].Hong Kong,China:IEEE Signal Processing Society,2010.1601-1604.
  • 4Ramírez I,Sprechmann P,Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features[A].California,USA:IEEE Computer Society,2010.3501-3508.
  • 5Zhang Q,Li B X. Discriminative K-SVD for dictionary learning in face recognition[A].California,USA:IEEE Computer Society,2010.2691-2698.
  • 6Mailhé B,Plumbley M D. Dictionary learning with large step gradient descent for sparse representations[A].Tel-Aviv,Israel:Springer,2012.231-238.
  • 7Aharon M,Elad M,Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,(11):4311-4322.doi:10.1109/TSP.2006.881199.
  • 8Jiang Z L,Lin Z,Davis L S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD[A].Colorado Springs,USA:IEEE Computer Society,2011.1697-1704.
  • 9Ramirez I,Sapiro G. Sparse coding and dictionary learning based on the MDL principle[A].Prague,Czech Republic:IEEE,2011.2160-2163.
  • 10Yang M,Zhang L,Feng X C. Fisher discrimination dictionary learning for sparse representation[A].Barcelona,Spain:IEEE,2011.543-550.

共引文献118

同被引文献89

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部