期刊文献+

基于多尺度空间相关的气象要素预测

Meteorological Elements Forecasting Based on Multi-scale Spatial Correlation
下载PDF
导出
摘要 气象要素预测与人们的日常生活密切相关,为了探索气象要素的空间相关性质,进而实现不同时间尺度的气象要素预测,采用了图信号方法,利用能够简洁地刻画变量间依赖关系的概率图模型,由各个气象观测站点数据构成图模型的节点,建立条件高斯图模型,学习图中边的分布规律,以确定站点间的空间相关关系。根据天气系统的特征尺度,对条件高斯图模型进行改进,引入相似度矩阵,通过交叉验证的方法确定各个预测时间尺度所对应的相似度矩阵参数,建立多尺度空间相关模型,利用改进的二阶有效集方法进行模型估计。将此模型应用于全球3431个国际交换站,分别进行了6小时、24小时、72小时和7天降水量与气温的气象要素预测。实验结果表明,该模型在计算效率和预测准确率方面都有所提升。 Meteorological element prediction is closely related to people’s daily life.In order to explore the spatial correlation properties of meteorological elements and then realize the prediction of meteorological elements at different time scales,the graph signal method is adopted.The probability graph model which can concisely depict the dependence relationship between variables is used.The node of the graph model is composed of the data of each meteorological observation station,and the conditional Gauss graph model is established.To determine the spatial correlation between sites,the distribution of edges in the exercise is studied.According to the characteristic scale of weather system,the conditional Gaussian graph model is improved,and the similarity matrix is introduced.The parameters of the similarity matrix corresponding to each prediction time scale are determined by cross-validation method.A multi-scale spatial correlation model is established,and the model is estimated by using the improved second-order effective set method.The model is applied to 3431 international exchange stations in the world,and the meteorological elements of precipitation and temperature are predicted for 6 hours,24 hours,72 hours and 7 days respectively.The experimental shows that the model has improved both in calculation efficiency and prediction accuracy.
作者 刘丽丹 LIU Li-dan(School of Computer Science and Technology,NUAA University,Nanjing 210018,China)
出处 《计算机技术与发展》 2019年第12期148-152,共5页 Computer Technology and Development
基金 国家自然科学基金青年科学基金(41405135)
关键词 概率图模型 条件高斯图模型 相似度矩阵 空间相关 要素预测 probability graph model conditional Gauss graph model similarity matrix spatial correlation factor prediction
  • 相关文献

参考文献6

二级参考文献345

  • 1颜刚,陈武凡,冯衍秋.广义模糊Gibbs随机场与MR图像分割算法研究[J].中国图象图形学报,2005,10(9):1082-1088. 被引量:13
  • 2李旭超,朱善安.FGMM-MRF层次模型在图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(12):2659-2664. 被引量:8
  • 3刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 4陈允杰,张建伟,韦志辉,夏德深,王平安.基于高斯混合模型的活动轮廓模型脑MRI分割[J].计算机研究与发展,2007,44(9):1595-1603. 被引量:13
  • 5Blekas K, Likask A, Galatsanos N P. A spatially constrained mixture model for image segmentation [J ]. IEEE Transactions on Neural Networks, 2005,16 ( 2 ) :494 - 498.
  • 6Wells W M,Grimson E L, Kikinis R,et al. Adaptive segmentation of MRI data[ J ]. IEEE Transactions on Medical Image, 1996,15 ( 8 ) :429 - 442.
  • 7Guillemaud R, Brady J M. Estimating the bias field of MR images [ J ]. IEEE Transactions on Medical Image, 1997,16 ( 7 ) :238 - 251.
  • 8Ruf A,Greenspan H, Goldberger J. Automated tissue classification of noisy MR images of the brain using the constrained multiple multivariate Gaussian mixture model[ EB/OL]. http://www. eng. tau. ac. il/- shiri/mip_lab/cgmm. htm,2007-03-28/2007-04-03.
  • 9Zhang Yongyue,Brady Michael,Smith Stephen. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [ J ]. IEEE Transactions on Medical Image,2001,20( 1 ) :45 -57.
  • 10Sanjay-Gopal S,Thomas J Hebert. Bayesian Pixel classification using spatially variant finite mixtures and the generalized EM algorithm[ J]. IEEE Transactions on Image Processing, 1998,7 (7) : 1014 - 1028.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部