期刊文献+

基于亮度评估技术的特征增强衍生图融合算法

Feature Enhancement Derivative Fusion Algorithm Based on Luminance Evaluation Technology
下载PDF
导出
摘要 针对由动态范围,光照条件,图像捕获设备等因素获得的低亮度图像,提出了一种基于亮度评估技术的特征增强衍生图融合算法来实现亮度较暗图像的对比度调整和特征增强.首先,利用亮度评估技术对低亮度图像的亮度进行评估优化处理,得到曝光率映射;然后,结合曝光率映射和改进的卡方分布函数模型来获取两幅特征增强的衍生图进行融合.最后,利用改进的衍生图融合算法得到最终融合图像.实验结果表明,所提算法的亮度误差,视觉信息保真度,图像互信息等评估参数优于近期方法,在提升图像对比度同时保留了图像良好曝光率区域,并较好地恢复了低亮度区域的边缘以及纹理等细节信息. Focused on the low-light images obtained from dynamic range, illumination condition, image acquisition equipment, etc., a feature enhancement derivative fusion algorithm based on luminance evaluation technology was proposed to achieve contrast adjustment and feature enhancement of the low-light images. Firstly, the brightness evaluation technique was used to optimize the brightness of the low-light image to obtain the exposure ratio map. Then,combining exposure ratio map and improved chi-square distribution function model, two derivatives with enhanced features were obtained for fusion. Finally, the fusion image was obtained by using the improved derivative fusion algorithm. The experimental results indicate that the proposed algorithm achieves the better results including brightness order error, visual information fidelity and image mutual information, improves the image contrast while preserving the well-exposed region, and it can recover the edge and texture details of the low-luminance region.
作者 韦超 唐丽娟 陈冠楠 WEI Chao;TANG Li-Juan;CHEN Guan-Nan(Key Laboratory of Optoelectronic Science and Technology for Medicine(Ministry of Education)Cum.Fujian Provincial Key Laboratory for Photonics Technology,Fujian Normal University,Fuzhou 350007,China;Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application,Fujian Normal University,Fuzhou 350007,China)
出处 《计算机系统应用》 2019年第11期195-201,共7页 Computer Systems & Applications
基金 福建省自然科学基金(2019J01272,2016H0013) 国家自然科学基金(81741008) 长江学者及大学创新研究团队项目(IRT_15R10) 中央指导地方科技发展资金(2017L3009)~~
关键词 亮度评估技术 特征增强衍生图融合 曝光率映射 卡方分布函数模型 luminance evaluation technology feature enhancement derivative fusion the exposure ratio map chi-square distribution function model
  • 相关文献

参考文献8

二级参考文献63

  • 1岑翼刚,岑丽辉,孙德宝.信号Lipschitz奇异性的计算与分析[J].计算机工程与应用,2004,40(18):35-36. 被引量:6
  • 2伍俊良,刘飞.实对称矩阵和与差的一些特征值与F-范数不等式[J].高等学校计算数学学报,2004,26(4):365-370. 被引量:5
  • 3华顺刚,张洁玉,欧宗瑛.基于图像的光照[J].计算机工程与设计,2005,26(3):796-797. 被引量:1
  • 4侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 5Wielandt H W. The variation of the spectrum of a normal matrix. Duke Math J.,1953, 20: 37-39.
  • 6Horn R and Johnson C. Topics in Matrix Analysis. Cambridge University Press. New York, 1991.
  • 7Wang B Y and Zhang F Z. Some inequalities for the eigenvalues of the products semidefinite Hermitian matrices. Linear Algebra Appl.,1992,160:113-118.
  • 8Wang B Y and Zhang F Z. Trace and eigenvalues inequalities for ordinary and Hadamard products of positive semidefinite Hermitian matrices. SIAM J. Matrix Anal. Appl. 1995,16(4): 1173-1183.
  • 9Wang B Y , Xi B Y and Zhang F Z. Some inequalities for sum and products of positive semidefinite matrices. Linear Algebra Appl.,1999,293:39-49.
  • 10Hardy G H, Littlewood J E and Polya G. inequalities. Cambridge, Cambridge University, 1952.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部