期刊文献+

化学法抑制内源磷释放工程应用及研究进展 被引量:5

Chemical Methods for Inhibiting Release of Endogenous Phosphorus:Engineering Application and Research Progress
下载PDF
导出
摘要 水体富营养化导致的蓝藻暴发、水体浑浊、水质变差已成为一个全球性的问题。在切断外源负荷的情况下,抑制内源磷释放成为降低水体磷负荷和抑制水体富营养化的关键。与异位处理技术相比,原位化学钝化由于操作简便、成本低、对生态影响小而备受关注。常用的化学试剂大致可以分为4类:钙盐、铁盐、铝盐和镧修饰膨润土,文章综述了各类化学试剂在国内外工程化应用和研究进展,并对未来发展提出展望,以期为湖泊修复工程实施提供科学依据和技术指导。 Eutrophication of waterbodies has been a global problem, which leads to cyanobacterial blooms causing water turbidity, and finally, deterioration of water quality. In case that the external phosphorus load of the water body has been cut off,it become critical to hold endogenous phosphorus release in order to reduce phosphorus loads inhibiting eutrophication. In this review, technology of the in-situ chemical passivation is described, which compared with the ectopic treatment, is simple and low cost in operation, as well as minor ecological impacts. The commonly used chemical reagents used in the passivation could be roughly divided into four categories:such ascalcium salts, iron salts, aluminum salts and lanthanum modified bentonite;all of them applied in engineering are summarized, as well as the research progress of various chemical reagents at home and abroad. It is expected that the review as a technical reference will be helpful in lake restoration engineering.
作者 林志国 苏艳 LIN Zhiguo;SU Yan(School of Chemical Science and Technology,Yunnan University,Kunming 650091,China;National Demonstration Center for Experimental Chemistry and Chemical Engineering Education,Yunnan University,Kunming 650091,China)
出处 《环境科学与技术》 CAS CSCD 北大核心 2019年第8期59-68,共10页 Environmental Science & Technology
基金 阳宗海污染治理项目(K1070014) 陈景院士2018年自由探索项目(KC1810124)
关键词 内源磷释放 湖泊修复 原位化学钝化 工程化应用 endogenous phosphorus release lake restoration in-situ chemical passivation engineering application
  • 相关文献

参考文献1

二级参考文献55

  • 1Filippelli G M. The global phosphorous cycle: Past, present, and future. Elements, 2008, 4:89-95.
  • 2Gilbert N. The disaooearing nutrient. Nature. 2009. 461:716-718.
  • 3Raghothama K G. Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol, 1999, 50:665-693.
  • 4Rosling A, Suttle K B, Johansson E, et al. Phosphorous availability influences the dissolution of apatite by soil Fungi. Geobiology, 2007, 5:265-280.
  • 5Manning D A C. Phosphate minerals, environmental pollution and sustainable agriculture. Elements, 2008, 4:105-108.
  • 6Wang L J, Nancollas G H. Calcium orthophosphates: Crystallization and dissolution. Chem Rev, 2008, 108:4628-4669.
  • 7Wang L J, Nancollas G H. Pathways to biomineralization and biodemineralization of calcium phosphates: The thermodynamic and kinetic controls. Dalton Trans, 2009, 2665-2672.
  • 8Chemov A A. Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank. J Cryst Growth, 2004, 264:499-518.
  • 9Zhang J W, Nancollas G H. Kink density and rate of step movement during growth and dissolution of an AB crystal in a nonstoichiometric solution. J Colloid Interface Sci, 1998, 200:131-145.
  • 10Cuppen H M, Meekes H, van Enckevort W J P, et al. Birth-and- spread growth on the Kossel and a non-Kossel surface. J Cryst Growth, 2006, 286:188-196.

同被引文献100

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部