摘要
引入n维BCI-代数及广义中智四重BCI-代数等新概念,研究它们的基本性质,证明了以下结果:由任意n个BCI-代数(或BCK-代数)可生成一簇同构的n维BCI-代数(或n维BCK-代数),由任意n个广义结合BCI-代数可生成一簇同构的n维广义结合BCI-代数,由任意n个正关联BCK-代数(或可换、关联BCK-代数)可生成一簇同构的n维正关联BCK-代数(或n维可换、关联BCK-代数);同源可生成的4维BCI/BCK-代数与中智四重BCI/BCK-代数范畴等价,可生成的4维BCI/BCK-代数与广义中智四重BCI/BCK-代数范畴等价。
In this paper,the new notions of n-dimension BCI-algebra and generalized neutrosophic quadruple BCI-algebra were proposed,with some properties of them investigated.The following results are proved:a family of isomorphic n-dimension BCI/BCK-algebras can be obtained from n-entries BCI/BCK-algebras;a family of isomorphic n-dimension generalized associative BCI-algebras can be obtained from n-entries generalized associative BCI-algebras;a family of isomorphic n-dimension positive implication(commutation,implication)BCK-algebras can be obtained from n-entries positive implication(commutation,implication)BCK-algebras;isogenous generable 4-dimension BCI/BCK-algebra and neutrosophic quadruple BCI/BCK-algebra are category equivalent;generable 4-dimension BCI/BCK-algebra and generalized neutrosophic quadruple BCI/BCK-algebra are category equivalent.
作者
王保社
WANG Baoshe(School of Mathematics and Information Science,Xianyang Normal University,Xianyang 712000,Shaanxi,China)
出处
《咸阳师范学院学报》
2019年第6期1-4,共4页
Journal of Xianyang Normal University