摘要
分析了一类定时脉冲疫苗接种的分数阶SIS传染病模型的稳定性.基于分数阶比较定理,推导出脉冲分数阶SIS系统的平凡解是一致渐近稳定的.也就是说,疾病将会最终消亡.最后,通过仿真实例验证了理论结果的正确性,同时也仿真出分数阶参数和疫苗接种比例对疾病衰减速度的影响.这对预防和控制传染病的传播具有一定的理论指导作用.
The stability of a class of fractional-order SIS models with pulse vaccination is analyzed in this paper.Based on the fractional-order comparison theorem,the trivial solutions of the impulsive fractional-order SIS systems axe uniformly asymptotically stable.That is,the disease will eventually die out.Finally,the theoretical results axe verified by simulation examples,and the effects of fractional-order parameter and vaccination ratio on the rate of disease attenuation are also simulated.This study has certain theoretical guiding function to prevent and control the spread of infectious diseases.
作者
刘娜
方洁
邓玮
LIU Na;FANG Jie;DENG Wei(School of Electric and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处
《数学的实践与认识》
北大核心
2019年第22期254-259,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(61775198,61603348)
河南省自然科学基金(162300410323)
河南省科技攻关项目(192102210083,182102210160,182102210609)
河南省高等学校青年骨干教师基金(2016GGJS090)
郑州轻工业学院博士科研基金(2014BSJJ047)