期刊文献+

基于点击化学反应的织物超疏水改性研究 被引量:3

Study on Superhydrophobic Modification of Fabric Based on Chemical Click Method
原文传递
导出
摘要 基于巯基烯的点击化学反应,成功将γ-巯丙基三乙氧基硅烷(KH-580)与乙烯基封端的聚二甲基硅氧烷(vinyl-PDMS)接枝到织物上,制备出具有优异油水分离效果的超疏水织物.利用红外光谱、扫描电子显微镜、X-射线光电子能谱等对改性织物进行表征,并考察了其表面疏水性及油水分离性能.结果表明,得到的超疏水织物表面具有沟壑和条纹结构,接触角最高可达156°,滚动角最高可达2°.超疏水织物的油水分离效率最高为99.8%,并且在连续进行20次油水分离之后,依然保持99%的分离效率. γ-Mercaptopropyltriethoxysilane(KH-580)and vinyl-terminated polydimethylsiloxane(vinyl-PDMS)were successfully grafted onto the fabric via thiol-ene click reaction,thus,super hydrophobic fabric with excellent oil-water separation ability prepared.The modified fabrics were characterized by infrared spectroscopy,scanning electron microscopy and X-ray photoelectron spectroscopy.The surface hydrophobicity and oil-water separation performance were investigated and their results showd that the surface of the superhydrophobic fabric obtained was in gully and stripe structure with a contact angle of 156°and a rolling angle of 2°.99.8%of the oil-water mixture could be separated by the fabric,and the ratio stayed around 99%after 20 cycles.
作者 贺立 陈晓丹 李铮 靳焘 陈玉放 赖华杰 刘瑞 HE Li;CHEN Xiao-dan;LI Zheng;JIN Tao;CHEN Yu-fang;LAI Hua-jie;LIU Rui(Guangzhou Institute of Chemistry,Chinese Academy of Science,Guangzhou 510641,China;Guangzhou CAS Testing&Techonology Services Co.,Ltd.Guangzhou 510641,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《高分子通报》 CAS CSCD 北大核心 2019年第11期26-32,共7页 Polymer Bulletin
关键词 点击化学反应 织物涂层 超疏水 油水分离 Click reaction Fabric coating Superhydrophobic Oil-water separation
  • 引文网络
  • 相关文献

参考文献2

二级参考文献43

  • 1Roach P, Shirtcliffe N J, Newton M 1. Progess in superhydrophobic surface development. Soft Matter, 2008.
  • 2Zhao N, Lu X Y, Zbang X Y, et al. Progress in superhydrophobic surfaces. Prog Chem, 2007, 19:860-871.
  • 3Yah Y Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting progress in preparing superhydrophobic surfaces. Adv Colloid Interface, 2011, 169:80-105.
  • 4Rothstein J P. Slip on superhydrophobic surfaces. Annu Rev Fluid Mech, 2010, 42:89-109.
  • 5Voronov R S, Papavassiliou D V, Lee L L. Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. lnd Eng Chem Res, 2008, 47:2455-2477.
  • 6Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr Opin Colloid Interface Sci. 2009, 14:270-280.
  • 7Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling, 2006, 22:339-360.
  • 8Wenzel R N. Surface roughness and contact angle. J Phys Colloid Chem, 1948, 53:1466-1467.
  • 9Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem lnt Ed, 2004, 43:2012-2014.
  • 10Wang S T, Song Y L, Jiang L. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology, 2007, 18:015103.

共引文献22

同被引文献39

引证文献3

二级引证文献3

;
使用帮助 返回顶部