期刊文献+

基于灰关联分析法和多元线性回归模型的有轨电车能耗预测 被引量:3

Energy consumption prediction of trams based on grey relation analysis and multiple linear regression model
下载PDF
导出
摘要 针对传统的有轨电车能耗预测模型缺少对能耗影响因素进行显著性量化分析的问题,提出灰关联分析法和多元线性回归模型相结合的有轨电车能耗预测方法。首先通过有轨电车动力学模型分析有轨电车能耗影响因素,然后利用灰关联分析法计算这些影响因素的关联度,最后选取关联度较大的因素作为模型输入变量,根据多元线性回归模型建立有轨电车能耗预测模型。经实验验证,新建模型的平均预测误差为2.29%,相比已有文献中提出的回归模型其预测误差更小。因此,该能耗预测模型能够更好地反映有轨电车能耗变化趋势。 Aiming at the problem that the traditional tram energy consumption prediction model lacks quantitative analysis on the significance of energy consumption influencing factors,a tram energy consumption prediction method based on grey relation analysis and multiple linear regression model is proposed.Firstly,the influencing factors of tram energy consumption are analyzed by tram dynamic model,and then the grey correlation analysis method is used to calculate the correlation degree of these influencing factors.Finally,the influencing factors with higher correlation degree are selected as the input variables of the model,and the tram energy consumption prediction model is established based on the multiple linear regression model.The experimental results show that the average prediction error of the new model is 2.29%,which is smaller than the regression model proposed in the literature.Therefore,the energy consumption prediction model proposed in this paper can better reflect the trend of tram energy consumption.
作者 苏兆路 潘春阳 Su Zhaolu;Dong Liwei(CCCC Tunnel Engineering Company Limited,Beijing 100102,China)
出处 《信息技术与网络安全》 2019年第12期63-69,共7页 Information Technology and Network Security
关键词 有轨电车 能耗预测 灰关联 回归模型 tram energy consumption prediction grey relation regression model
  • 相关文献

参考文献6

二级参考文献35

  • 1刘剑锋,丁勇,刘海冬,程文毅,毛保华,何天健.城市轨道交通多列车运行模拟系统研究[J].交通运输系统工程与信息,2005,5(1):79-82. 被引量:23
  • 2石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型[J].交通运输工程学报,2005,5(4):20-26. 被引量:51
  • 3商金涛.基于运营数据的北京市城市轨道交通能耗测算研究[D].北京:北京交通大学,2011.
  • 4刘海东,毛保华,丁勇,贾文峥,赖树坤.城市轨道交通列车节能问题及方案研究[J].交通运输系统工程与信息,2007,7(5):68-73. 被引量:62
  • 5孔令洋,梁青槐,张岩,杨广武.直线电机轮轨交通系统牵引能耗研究[J].铁道学报,2007,29(6):106-112. 被引量:11
  • 6HOYT E V, LEVARY R R. Assessing the Effects of Several Variables on Freight Train Fuel Consumption and Performance Using a Train Performance Simulator [J]. Transportation Research Part A.- General, 1990, 24 (2): 99-112.
  • 7IFEU (Institute for Energy and Environmental Research Heidelberg). Energy Savings by Light-Weighting[R]. Heidelberg: International Aluminium Institute, 2003.
  • 8RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of High-Speed Railway Train [J]. Progress in Aerospace Sciences, 2002, 38 (6): 469-514.
  • 9DOMINGUEZ M, CARDAIX)R A F, CUCALA A P, et al. Energy Savings in Metropolitan Railway Substations through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles [J]. 1EEE Transactions on Automation Science and Engineering, 2012, 9 (3); 406-504.
  • 10LIU R, GOLOVITCHER I M. Energy-Efficient Operation of Rail Vehicles [J]. Transportation Research Part A, 2003, 37 (10).- 917-932.

共引文献128

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部