期刊文献+

Seasonal Climate Prediction Models for the Number of Landfalling Tropical Cyclones in China 被引量:2

Seasonal Climate Prediction Models for the Number of Landfalling Tropical Cyclones in China
原文传递
导出
摘要 Two prediction models are developed to predict the number of landfalling tropical cyclones(LTCs) in China during June–August(JJA). One is a statistical model using preceding predictors from the observation, and the other is a hybrid model using both the aforementioned preceding predictors and concurrent summer large-scale environmental conditions from the NCEP Climate Forecast System version 2(CFSv2).(1) For the statistical model, the year-to-year increment method is adopted to analyze the predictors and their physical processes, and the JJA number of LTCs in China is then predicted by using the previous boreal summer sea surface temperature(SST) in Southwest Indonesia,preceding October South Australia sea level pressure, and winter SST in the Sea of Japan. The temporal correlation coefficient between the observed and predicted number of LTCs during 1983–2017 is 0.63.(2) For the hybrid prediction model, the prediction skill of CFSv2 initiated each month from February to May in capturing the relationships between summer environmental conditions(denoted by seven potential factors: three steering factors and four genesis factors) and the JJA number of LTCs is firstly evaluated. For the 2-and 1-month leads, CFSv2 has successfully reproduced these relationships. For the 4-, 3-, and 2-month leads, the predictor of geopotential height at 500 h Pa over the western North Pacific(WNP) shows the worst forecasting skill among these factors. In general, the summer relative vorticity at 850 h Pa over the WNP is a modest predictor, with stable and good forecasting skills at all lead times. Two prediction models are developed to predict the number of landfalling tropical cyclones(LTCs) in China during June–August(JJA). One is a statistical model using preceding predictors from the observation, and the other is a hybrid model using both the aforementioned preceding predictors and concurrent summer large-scale environmental conditions from the NCEP Climate Forecast System version 2(CFSv2).(1) For the statistical model, the year-to-year increment method is adopted to analyze the predictors and their physical processes, and the JJA number of LTCs in China is then predicted by using the previous boreal summer sea surface temperature(SST) in Southwest Indonesia,preceding October South Australia sea level pressure, and winter SST in the Sea of Japan. The temporal correlation coefficient between the observed and predicted number of LTCs during 1983–2017 is 0.63.(2) For the hybrid prediction model, the prediction skill of CFSv2 initiated each month from February to May in capturing the relationships between summer environmental conditions(denoted by seven potential factors: three steering factors and four genesis factors) and the JJA number of LTCs is firstly evaluated. For the 2-and 1-month leads, CFSv2 has successfully reproduced these relationships. For the 4-, 3-, and 2-month leads, the predictor of geopotential height at 500 h Pa over the western North Pacific(WNP) shows the worst forecasting skill among these factors. In general, the summer relative vorticity at 850 h Pa over the WNP is a modest predictor, with stable and good forecasting skills at all lead times.
出处 《Journal of Meteorological Research》 SCIE CSCD 2019年第5期837-850,共14页 气象学报(英文版)
基金 Supported by the National Natural Science Foundation of China(41421004 and 41325018) National Key Research and Development Program of China(2017YFA0603802)
关键词 tropical CYCLONE CLIMATE Forecast System version 2(CFSv2) year-to-year INCREMENT prediction tropical cyclone Climate Forecast System version 2(CFSv2) year-to-year increment prediction
  • 相关文献

参考文献12

二级参考文献137

共引文献328

同被引文献59

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部