1Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 23-25.
2Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780--785.
3Monnet A, Mittal A, Paragios N, Visvanathan R. Background modeling and subtraction of dynamic scenes. In: Proceedings of the 9th International Conference on Computer Vision. Washington D.C., USA: IEEE, 2003. 1305-1312.
4Elgammal A, Duraiswami R, Harwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163.
5Tuzel O, Porikli F, Meer P. A Bayesian approach to background modeling. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2005. 58-65.
6Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K. Background subtraction using generalised Gaussian family model. IEEE Electronics Letters, 2008, 44(3): 189-190.
7Mason M, Duric Z. Using histograms to detect and track objects in color video. In: Proceedings of the 30th Applied Imagery Pattern Recognition Workshop. Washington D.C., USA: IEEE, 2001. 154-159.
8Matsuyama T, Ohya T, Habe H. Background subtraction for non-stationary scenes. In: Proceedings of Asian Conference on Computer Vision. Taipei, China: IEEE, 2000. 622-667.
9Heikkila M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662.
10Li L Y, Huang W M, Gu I Y H, Tian Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 2004, 13(11): 1459-1472.