期刊文献+

一种压电式MEMS矢量水听器设计 被引量:3

Design of a Piezoelectric MEMS Vector Hydrophone
下载PDF
导出
摘要 针对当前单只矢量水听器定向精度低,只能实现1/4象限内定向的问题,本文提出了一种压电式MEMS矢量水听器,期望利用压电效应和该结构提高水听器灵敏度,同时拓宽频带,实现360°范围内声源的准确定向.该水听器微结构包括由梁和4个相互垂直锚结构组成的力学传动单元和由压电薄膜构成的力电敏感转换单元两部分,通过梁结构直接接收声波信息,利用压电薄膜材料两端产生的电荷密度和电荷极性实现声音信号大小和声源方向的检测.建立了该水听器微结构的等效运动模型,在此基础上建立了微结构频率特性和传感数学模型,并进行了仿真验证.理论和仿真结果表明,该水听器频响范围拓宽至10kHz. The current single vector hydrophone has the disadvantage of low orientation accuracy and can only realize orientation within a quarter of quadrant.Therefore,this paper proposes a piezoelectric MEMS vector hydrophone.It is desirable that the application of piezoelectric effect and ingenious structure may improve the sensitivity,broaden the frequency band,and realize the accurate orientation of the sound source within 360°.The vector hydrophone consists of two parts:apower transmission unit composing beam and four mutually perpendicular anchors,and sensing unit composing piezoelectric film.The beam structure directly receives the sound vibration signals,and the sensor can measure the magnitude and direction of vibration according to the charge quantity and electrode polarity on the surface of the piezoelectric film material in two dimensions.The equivalent motion model of the structure is establish,then the frequency characteristics and sensing mathematical model of the microstructure are established,and further simulation analysis is carried out.The theoretical and simulation results show that the frequency response range of the vector hydrophone is up to 10 kHz.
作者 刘林仙 王朝阳 马奎 LIU Linxian;WANG Zhaoyang;MA Kui(Dept.of Automation,Shanxi University,Taiyuan 030006,China)
出处 《测试技术学报》 2019年第6期520-523,546,共5页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(61603231) 山西省应用基础研究资助项目(201801D221166,201801D221172) 山西省高等学校科技创新资助项目(2019L0068)
关键词 微机电系统 矢量水听器 压电效应 声源定向 频带 MEMS vector hydrophone piezoelectric effect localization technique of underwater sound source frequency band
  • 相关文献

参考文献2

二级参考文献15

  • 1王晓林,王茂法.拖线阵水听器流噪声预报与实验研究[J].声学与电子工程,2006(3):6-11. 被引量:8
  • 2Zhang Guojun, Wang Panpan, Guan Lingang, et al. Improvement of the MEMS bionic vector hydrophone, Microelec- tronics Journal, 2011, 42(5) : 815-819.
  • 3No S H. Nuttall A: Analytical evaluation of flush-mounted hydrophone array response to the circus turbulent wall pressure spectrum[J]. JASA, 1991, 90(1): 579-588.
  • 4Chase D M. Mean velocity profiles of a thick turbulent boundary layer along a circular cylinder[J]. AIAA Journal, 1972, 10(7): 849-850.
  • 5Luxton R E, Bull M K, Rajagopalan S. The thick turbulent boundary layer on a long fine cylinder in axial now[J]. Aeronaut J, 1984, 88: 186-199.
  • 6Gobat J I, Grosenbaugh M A. Modeling the mechanical and flow-induced noise on the surface suspended acoustic re- ceiver [J]. Oceans', 1997(2): 748-754.
  • 7Lauchle G C. Flow-induced noise on underwater pressure vector acoustic sensors[J]. Oceans', 2002(3) : 1906-1910.
  • 8王远,郭林发,梅启勇.透声导流罩[P].专利号:200620157458.9,2006.
  • 9Xue Chenyang, Chen Shang, Zhang Wendong, et al. Design, fabrication and preliminary characterization of novel MEMS bionic vector hydrophone[J]. Microelectronics Journal, 2007, 38: 1021-1026.
  • 10张国军,陈尚,薛晨阳,张斌珍,张开瑞.纤毛式MEMS矢量水声传感器的仿生组装[J].纳米技术与精密工程,2009,7(3):221-227. 被引量:24

共引文献4

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部