期刊文献+

A Meshless LBIE/LRBF Method for Solving the Nonlinear Fisher Equation: Application to Bone Healing

下载PDF
导出
摘要 A simple Local Boundary Integral Equation(LBIE)method for solving the Fisher nonlinear transient diffusion equation in two dimensions(2D)is reported.The method utilizes,for its meshless implementation,randomly distributed nodal points in the interior domain and nodal points corresponding to a Boundary Element Method(BEM)mesh,at the global boundary.The interpolation of the interior and boundary potentials is accomplished using a Local Radial Basis Functions(LRBF)scheme.At the nodes of global boundary the potentials and their fluxes are treated as independent variables.On the local boundaries,potential fluxes are avoided by using the Laplacian companion solution.Potential gradients are accurately evaluated without RBFs via a LBIE,valid for gradient of potentials.Nonlinearity is treated using the Newton-Raphson scheme.The accuracy of the proposed methodology is demonstrated through representative numerical examples.Fisher equation is solved here via the LBIE/LRBF method in order to predict cell proliferation during bone healing.Cell concentrations and their gradients are numerically evaluated in a 2D model of fractured bone.The results are demonstrated and discussed.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第6期87-122,共36页 工程与科学中的计算机建模(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部