期刊文献+

基于Faster R-CNN的高分二号遥感影像特定目标识别 被引量:7

Faster R-CNN based specific target recognition of GF2 remote sensing images
下载PDF
导出
摘要 针对当前遥感影像特定目标识别效果较差的现状,基于深度学习网络对高分二号遥感影像特定目标进行准确识别。首先通过引入部分噪声增强样本数据建立样本库并在TensorFlow框架下配置Faster R-CNN网络学习目标特征建立可用于高分二号遥感影像特定目标识别的卷积网络。而后为判别深度学习网络的识别效果,选取遥感影像目标识别效果较好的约束能量最小化(constrained energy minimization,CEM)算法与之比较。最后在待识别遥感影像内生成房屋的包围框并标注识别房屋的置信度,得到总体房屋识别的置信度为95.61%以上。实验中CEM法房屋目标识别率为76.4%,而深度学习法可达到90.9%,深度学习法目标识别率比CEM法高14.5%。实验结果表明Faster R-CNN适用于高分二号遥感影像的特定目标识别,相较于CEM法识别率有明显提升。 In view of the current situation that the recognition effect of specific targets in remote sensing images is poor,based on deep learning network to accurately recognize specific targets in GF2 remote sensing images.Firstly,by introducing some noise-enhanced sample data to establish the sample database,and configuring Faster R-CNN network to learn target features under TensorFlow framework,a convolution network for GF2 specific target recognition is established.Then,in order to distinguish the recognition effect of deep learning network,the constrained energy minimization(CEM)algorithm with better recognition effect of remote sensing images is selected to compare with it.Finally,in the remote sensing image to be identified,the surround frame of the house is generated and the confidence of the identified house is marked.The confidence of the overall house recognition is more than 95.61%.In the experiment,the recognition rate of CEM method is 76.4%,while that of deep learning method is 90.9%.The recognition rate of deep learning method is 14.5%higher than that of CEM method.Conclusion Faster R-CNN is suitable for target recognition of GF2 remote sensing image.Compared with CEM,the recognition rate of Faster R-CNN is obviously improved.
作者 王井利 阎鑫 WANG Jingli;YAN Xin(School of Transportation Engineering,Shenyang Jianzhu University,Shenyang 110168,China)
出处 《中国科技论文》 CAS 北大核心 2019年第9期985-990,共6页 China Sciencepaper
基金 住房城乡建设部2016年科学技术项目计划(2016-R2-041)
关键词 高分二号遥感影像 目标识别 深度学习 FASTER R-CNN TensorFlow GF2 target recognition deep learning Faster R-CNN TensorFlow
  • 相关文献

参考文献7

二级参考文献65

  • 1王雪梅,高峰,马明国.全球民用陆地成像卫星概览[J].遥感技术与应用,2006,21(6):607-611. 被引量:6
  • 2汪凌,卜毅博.高分辨率遥感卫星及其应用现状与发展[J].测绘技术装备,2006,8(4):3-5. 被引量:17
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献729

同被引文献64

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部