期刊文献+

基于生成对抗网络的无人机图像去模糊方法 被引量:4

UAV Image Deblurring Method Based on Generative Adversarial Network
下载PDF
导出
摘要 提出一种基于加权感知损失的生成对抗网络(GAN)用于无人机图像去模糊。实验中采用具有跳跃连接结构的网络作为生成器,并对生成器使用加权感知损失进行约束,在生成器和判别器进行对抗式训练过程中,生成器不断学习并优化模糊图像到对应清晰图像的映射函数。另外,由于PSNR、SSIM图像质量客观评价指标的局限性,提出使用感知损失作为监控网络优化过程和模型选择的评价指标,最后使用感知损失选择的生成器模型对模糊图像进行盲去模糊。实验表明,该方法可快速有效地恢复出细节清晰的图像。 During the process of acquiring UAV image,the UAV can be affected by many factors such as wind,mechanical vibration and rapid relative motion between targets and UAV,so the images can be easily blurred and lose important details.Some CNN-based methods are used to deblur images,however,may still produce smooth images.The intuition is that in classification network,lower layers capture fine details while higher layers capture coarse objects.In this paper,we used network with skip connections as the generator to significantly reduce the inference time.In addition,due to the limitation of image quality assessment metrics such as PSNR and SSIM,we took weighted perceptual loss as an image quality assessment metric for model selection.The experimental result shows that this method can quickly and effectively restore the image with clear details.
作者 裴慧坤 颜源 林国安 江万寿 PEI Huikun
出处 《地理空间信息》 2019年第12期4-9,I0001,共7页 Geospatial Information
基金 南方电网重点科技项目(090000KK52160017)
关键词 图像盲去模糊 感知损失 生成对抗网络 卷积神经网络 image blind deblur perceptual loss generative adversarial network CNN
  • 相关文献

参考文献2

二级参考文献10

  • 1佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 2Daly S.The visible difference predictor:an algorithm for the assessment of image fidelity,digital images and human vision[M].Massachusetts,U S A:The MIT Press,1993:179 -206
  • 3Heeger D J,Teo T C.A model of perceptual image fidelity[C]//Proceeding of 1995 Internation Conference of Image Processing.Washington:[s.N.],343-345
  • 4Watson A B,Solomon J A.Model of visual contrast gain control and pattern masking[J].Journal of Optical Society of America,1997,14(9):2379-2391
  • 5Vanden C J,Branden Lambrecht,Costantini D M,et al,Quality assessment of motion rendition in video coding[J].IEEE Trans Circuits and Systems for Video Tech,1999,9(5):766-782
  • 6Zhou Wang,Liang Lu,Alan C Bovik.Video quality assessment using structural distortion measurement[C]// Proceeding of 2002 Intemation Conference of Image Processing.Rochester,New York:[s.N.],Ⅲ-65-68
  • 7RRNR-TV group test plan.Draft version 1.7[EB/OL].2004[2005 -01-10].http://www.vqeg.org
  • 8Wang Zhou,Alan C Bovik,Eero P.Simoncelli.Handbook of image and video processing[M].2 nd ed,New York:Academic Press,2005
  • 9Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10 (5):988-999
  • 10JPEG-release1 _database[DB/OL].2005.Http://live.Ece.utexas.Edu/index.Htm

共引文献40

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部