期刊文献+

Online Group Recommendation with Local Optimization 被引量:1

下载PDF
导出
摘要 There are some scenarios that need group recommendation such as watching a movie or a TV series,selecting a tourist destination,or having dinner together.Approaches in this domain can be divided into two categories:Creating group profiles and aggregating individual recommender list.Yet none of the above methods can handle the online group recommendation both efficiently and accurately and these methods either strongly limited by their application environment,or bring bias towards those users having limited connections with this group.In this work,we propose a local optimization framework,using sub-group profiles to compute the item relevance.Such method can captures and removes the bias existed in the traditional group recommendation algorithms in a certain degree.It can then be used to derive single-user recommendation.We also propose an approach to overcome the problem caused by dynamic change or user updating about his social network,which detects the target user’s group by analyzing the link types between he and his neighbours,and then use the group information to generate his recommendations.Experimental analysis for group and personal recommendation on three different sizes of MovieLens datasets show fairly good results,our method consistently outperform several state-of-the-arts in efficiency.And we also provide the explanations behind the phenomena during the experiments.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第5期217-231,共15页 工程与科学中的计算机建模(英文)
基金 This research was financially supported by the High Level Talents Scientific Research Fund in Jiangsu University of Science and Technology under grants 1132921506 and Jiangsu natural science foundation under grants BK20150471.
  • 相关文献

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部