期刊文献+

基于第一性原理的锰掺杂二维二硫族化物的电磁学特性研究

Research on first-principle based electromagnetic characteristics for Mn-doped two-dimensional dichalcogenide
下载PDF
导出
摘要 二维材料和自旋电子学已经成为当今电子学的研究热点之一。文中基于第一性原理计算方法,对Mn掺杂的单层MoS2,MoSe2,MoTe2和单层WS2的电磁学特性进行研究。结合态密度和自旋电荷密度的分析,发现由于局域Mn自旋和硫族原子的离域p自旋之间的反铁磁交换作用,Mn分别替位掺杂在Mo和W位置上会产生长程铁磁序。同时对其他过渡金属掺杂的二维硫化物的磁序进行了研究,发现过渡金属替位掺杂只存在铁磁交换作用,且无法产生长程的铁磁序。文中的研究成果预示了锰掺杂二维二硫族化物作为二维稀磁半导体的潜力,可以为相关研究提供理论支撑。 Two-dimensional materials and spintronics have become one of the research hotspots in electronics. On the basis of the first-principle calculation method,the electromagnetic characteristics of Mn-doped monolayer MoS2,MoSe2,MoTe2 and WS2 are studied in this paper. The analyses of the state density of and the spin charge density are combined,from which it can be found that,on account of the antiferromagnetic exchange interaction between the delocalized p spin of the chalcogenide atoms and the localized Mn spin,Mn substitutes at Mo and W position respectively to produce a long-range ferromagnetic sequence.Furthermore,the magnetic sequences of other transition metal-doped two-dimensional sulphide are researched. In the research,it′ s found that the displacement doping of the transition metal only has ferromagnetic exchange interaction and cannot produce any long-range ferromagnetic sequences. The research results predict the high potential that the Mn-doped two-dimensional dichalcogenide may become the two-dimensional dilute magnetic semiconductor,which can provide theoretical guidance for related researches.
作者 卿晓梅 镇思琦 QING Xiaomei;ZHEN Siqi(Nantong Institute of Technology,Nantong 226002,China)
机构地区 南通理工学院
出处 《现代电子技术》 北大核心 2019年第24期34-37,共4页 Modern Electronics Technique
基金 国家自然科学基金(11447229)~~
关键词 锰掺杂二维二硫族化物 第一性原理 电磁学特性 分子建模 自旋电荷密度 磁序研究 Mn-doped two-dimensional dichalcogenide first-principle electromagnetic characteristics molecule modeling electric charge density ferromagnetic sequence research
  • 相关文献

参考文献2

二级参考文献45

  • 1KOO H C, YI H, KO J B, et al. Electrical spin injection and detection in an InAs quantum well [J]. Appl Phys Lett, 2007, 90 (2): 022101-1-022101-3.
  • 2HANBICKI A T, KIOSEOGLOU G, HOLUB M A, et al. Electrical spin injection from Fe into ZnSe (001) [J]. Appl Phys Lett, 2009, 94 (8): 082507-1-082507-3.
  • 3JONKER B T, KIOSEOGLOU G, HANBICKI A T, et al. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact [J]. Nature Physics, 2007, 3 (8): 542-546.
  • 4KU J H, CHANG J, KIM H, et al. Effective spin injection in Au film from permalloy [J]. Appl Phys Lett, 2006, 88 (17): 172510-1-172510-3.
  • 5TSE W K, SARMA S D. Spin Hall effect in doped semiconductor structures [J]. Phys Rev Lett, 2006, 96 (5): 056601-1 - 056601-4.
  • 6SHIBATA J, KOHNO H. Inverse spin Hall effect driven by spin motive force[J]. Phys Lett, 2009, 102 (8): 086603- 1 - 086603-4.
  • 7HANKIEWICZ E M, VIGNALE G. Phase diagram of the spin Hall effect [J]. Phys Lett, 2008, 100 (2), 026602- 1 - 026602-4.
  • 8FAN J, EOM J. Direct electrical observation of spin Hall effect in Bi film [J]. Appl Phys Lett, 2008, 92 (14): 142101-1 - 142101-3.
  • 9SEIKI T, HASEGAWA Y, MITANI S, et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices [J]. Nature Materials, 2008, 7 (2): 125-128.
  • 10ZHOU B, SHEN S Q. Deduction of pure spin current from the linear and circular spin photogalvanie effect in semiconductor quantum wells [J]. Phys Rev: B, 2007, 75 (4):045339-1 - 045339-6.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部