期刊文献+

集成学习在短文本分类中的应用研究 被引量:6

Application of ensemble learning in short text classification
下载PDF
导出
摘要 为了进一步提高基于深度神经网络短文本分类性能,提出将集成学习方法应用于5种不同的神经网络文本分类器,即卷积神经网络、双向长短时记忆网络、卷积循环神经网络、循环卷积神经网络、分层注意力机制神经网络,分别对两种集成学习方法(Bagging,Stacking)进行了测试。实验结果表明:将多个神经网络短文本分类器进行集成的分类性能要优于单一文本分类模型;进一步两两集成的实验验证了单个模型对短文本分类性能的贡献率。 As for improving the classification performance of short text based on the deep neural networks,the application of ensemble learning method on five different neural network text classifiers(convolutional neural networks,bidirectional long short term memory networks,convolutional cyclic neural networks,recurrent convolutional neural networks,hierarchical attentional neural netwoks) is proposed,in which the two ensemble learning methods(Bagging,Stacking) are tested respectively.The experimental results show that the classification performance of the model integrated with multiple neural network short text classifiers is better than that of any single classification model. The pairwise model combination experiments are carried out to verify the contribution of a single model to short text classification.
作者 王国薇 黄浩 周刚 胡英 WANG Guowei;HUANG Hao;ZHOU Gang;HU Ying(School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China)
出处 《现代电子技术》 北大核心 2019年第24期140-145,共6页 Modern Electronics Technique
基金 国家重点研发计划项目(2017YFB1402101) 国家自然科学基金(61663044) 国家自然科学基金(61761041) 国家自然科学基金(61603323) 新疆大学博士科研启动基金(BS160239)~~
关键词 短文本分类 机器学习 深度学习 集成学习 BAGGING STACKING short text classification machine learning deep learning ensemble learning Bagging Stacking
  • 相关文献

参考文献5

二级参考文献68

共引文献118

同被引文献68

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部