期刊文献+

基于GM(1,1)尺度估计的核相关性滤波跟踪方法

A Kernel Correlation Filtering Tracking Method Based on GM(1,1) Scale Estimation
下载PDF
导出
摘要 针对在目标视觉跟踪过程中目标尺度变化导致跟踪精度下降的问题,提出了基于GM(1,1)尺度估计的核相关性滤波跟踪方法。在核相关性滤波跟踪算法的基础上引入GM(1,1)灰色预测模型对目标尺度进行预测,并设计尺度估计流程估计当前目标尺度,有效地解决了尺度变化明显导致跟踪性能下降的问题。最后利用OTB-100视频序列数据集测试算法的性能,测试结果表明在目标尺度明显变化时,该算法仍具有较好的跟踪性能,可实现稳定准确的目标跟踪,有效地提高了核相关性滤波跟踪算法的跟踪性能。 Aiming at the problem that the tracking accuracy decreases due to the change of target scale in the process of target visual tracking a kernel correlation filtering tracking method based on GM(11)scale estimation is proposed.The GM(11)grey prediction model is introduced to predict the target scale based on the kernel correlation filtering tracking algorithm and the scale estimation process is designed to estimate the current target scale which effectively solves the problem of tracking performance declining caused by obvious scale changes.Finally the OTB-100 video sequence dataset is used to test the performance of the algorithm.The test results show that the algorithm still has good tracking performance when the target scale changes significantly.It can realize stable and accurate target tracking and effectively improve the tracking performance of the kernel correlation filter tracking algorithm.
作者 陈均瑞 李郴荣 戴兴安 盛守照 CHEN Jun-rui;LI Chen-rong;DAI Xing-an;SHENG Shou-zhao(Nanjing University of Aeronautics and Astronautics,Nanjing 210016 China)
出处 《电光与控制》 CSCD 北大核心 2019年第12期64-68,共5页 Electronics Optics & Control
基金 航空科学基金(2016ZC52018)
关键词 核相关性滤波 尺度估计 目标跟踪 GM(1 1)灰色预测 kernel correlation filtering scale estimation target tracking GM(11)grey prediction
  • 相关文献

参考文献2

二级参考文献218

  • 1李生彪.基于ARMA模型的故障率时间序列预测[J].自动化与仪器仪表,2015(12):218-219. 被引量:11
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3Bouwmans T, El Baf F, Vachon B. Background modeling using mixture of Gaussians for foreground detection: A survey. Recent Patents on Computer Science, 2008, 1(3) 219-237.
  • 4Wojek C, Dollar P, Schiele B, Perona P. Pedestrian detection: An evaluation o{ the state o{ the art. IEEE Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761.
  • 5Yilmaz A, Javed O, Shah M. Object trackingt A survey. ACM Computing Surveys (CSUR), 2006, 38(4) 1-29.
  • 6Wang X. Intelligent multi-camera video surveillance: A review. Pattern Recognition Letters, 2012, 34 (1) : 3-19.
  • 7Wu Y, Lira J, Yang M H. Online object tracking: A bench- mark//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013 2411-2418.
  • 8Andreopoulos A, Tsotsos J K. 50 years of object recognition: Directions forward. Computer Vision and Image Understanding, 2013, 117(8) 827-891.
  • 9Zhang X, Yang Y H, Han Z, et al. Object class detection: A survey. Association for Computing Machinery Computing Surveys (CSUR), 2013, 46(1) : 1311-1325.
  • 10Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1114-1127.

共引文献404

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部