期刊文献+

基于辅助记忆循环神经网络的视角级情感分析 被引量:2

Aspect Level Sentiment Analysis Based on Recurrent Neural Network with Auxiliary Memory
下载PDF
导出
摘要 现有视角级情感分析方法大多数利用视角词信息从句子中提取特征,不能同时利用视角和视角词信息,导致模型性能较低,为此文中提出基于辅助记忆循环神经网络的视角级情感分析方法.首先通过深度双向长短期记忆网络和单词的位置信息构建位置权重记忆,利用注意力机制结合视角词建立视角记忆.再联合位置权重记忆和视角记忆输入多层门循环单元,得到视角情感特征.最后由归一化函数识别情感极性.实验表明,相对基准实验,文中方法在3个公开数据集上的效果更好,该方法是有效的. Aspect level sentiment analysis employs information of terms to extract features from a sentence,and it cannot utilize information of both aspects and terms simultaneously.Therefore,the model performance is low.Aiming at this problem,an aspect level sentiment analysis based on recurrent neural network with auxiliary memory is proposed.Deep bidirectional long short term memory(DBLSTM)and positional information of words are exploited to build position-weighted memory.The attention mechanism is combined with aspect terms to build aspect memory,and with position-weighted memory and aspect memory to input a multi-layer gated recurrent unit.Then,sentimental features of the aspect are obtained.Finally,sentimental polarity is identified by the normalized function.Experimental results show that the proposed method achieves better results on three public datasets with high effectiveness.
作者 廖祥文 林威 吴运兵 魏晶晶 陈国龙 LIAO Xiangwen;LIN Wei;WU Yunbing;WEI Jingjing;CHEN Guolong(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116;Fujian Provincial Key Laboratory ofNetworking Computing and IntelligentInformation Processing,Fuzhou University,Fuzhou 350116;Digital Fujian Institute of Financial BigData,Fuzhou 350116;College of Electronics and InformationScience,Fujian Jiang-xia University,Fuzhou350108)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第11期987-996,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61772135,U1605251) 福建省自然科学基金面上项目(No.2017J01755) 中国科学院网络数据科学与技术重点实验室开放基金课题(No.CASNDST201708,CASNDST201606) 模式识别国家重点实验室开放课题基金项目(No.201900041) 赛尔网络下一代互联网技术创新项目(No.NGII20160501) 北邮可信分布式计算与服务教育部重点实验室主任基金项目(No.2017KF01)资助~~
关键词 视角级情感分析 注意力机制 深度学习 Aspect Level Sentiment Analysis Attention Mechanism Deep Learning
  • 相关文献

同被引文献8

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部