期刊文献+

基于商品评论的群体用户情感趋势预测研究 被引量:7

Research on the Prediction of Group User Sentiment Trend Based on Commodity Comment
下载PDF
导出
摘要 提出了一种基于商品评论的群体用户情感趋势预测方法.首先,提出了基于BosonNLP的情感特征词识别算法,对时间维度下的商品评论信息进行特征选取;其次,使用群体用户多维特征向量构造多层感知器(MLP)模型进行情感分析;最后,融合评论时间和用户情感倾向值构建群体用户时序情感倾向序列,并通过长短时记忆网络(LSTM)模型进行时序情感趋势预测.在大规模真实数据集上的实验结果表明,MLP模型具有较好的分类效果;相比于现有的自回归(AR)模型,LSTM模型的平均均方差降低了79.06%,能够取得更加精准的预测结果. The group user sentiment trend prediction method which was based on commodity comment was proposed.Firstly,the analysis method of emotional characteristic words based on BosonNLP was put forward,to select the commodity comment information in the time dimension.Secondly,MLP was constructed by using group user multi-dimensional feature vector to analyze user′s sentiment.Finally,the group user time sentiment tendency sequence was constructed by integrating the comment time and the user′s sentimental trendency value.The sequence sentimental trend prediction was performed by using the LSTM model.Experimental results of large-scale real datasets indicated that the MLP model had a good classification effect.Compared with the existing autoregressive(AR)model,the average MSE of the LSTM was reduced by 79.06%,which could achieve a more accurate prediction result.
作者 周俊鹏 高岭 曹瑞 高全力 郑杰 王海 ZHOU Junpeng;GAO Ling;CAO Rui;GAO Quanli;ZHENG Jie;WANG Hai(School of Information Science and Technology,Northwest University,Xi′an 710027,China;School of Computer Science,Xi′an Polytechnic University,Xi′an 710048,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2019年第4期23-29,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61672426,61572401) 国家重点研发计划项目(2017YFB1002500)
关键词 群体用户 商品评论 情感分析 时间序列 趋势预测 group user commodity comment sentiment analysis time series trend prediction
  • 相关文献

参考文献3

二级参考文献26

  • 1徐琳宏,林鸿飞.基于语义特征和本体的语篇情感计算[J].计算机研究与发展,2007,44(z2):356-360. 被引量:13
  • 2Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. The Journal of Ma- chine Learning Research, 2003, 3; 1137-1155.
  • 3Mikolov T, Karaficit M, Burget L, et al. Recurrent neural network based language model[C]//Proceed- ings of the llth Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010. 2010. 1045-1048.
  • 4Socher R, Pennington J, Huang E H, et al. Semi-su- pervised recursive autoencoders for predicting senti- ment distributions[C]//Proeeedings of the Conference on Empirical Methods in Natural Language Process- ing. Association for Computational Linguistics, 2011:151-161.
  • 5Hochreiter S, Bengio Y, Frasconi P, et al. Gradient flow in recurrent nets: the difficulty of learning long- term dependencies M. Wiley-IEEE Press, 2001: 237-243.
  • 6Hochreiter S, Schmidhuber J. Long short-term memo- ry. Neural computation, 1997, 9(8): 1735-1780.
  • 7Socher R, Lin C C, Manning C, et al. Parsing natural scenes and natural language with recursive neural net- works[C//Proceedings of the 28th international con- ference on machine learning (ICML-11). 2011 : 129- 136.
  • 8Socher R, Perelygin A, Wu J Y, et al. Recursive deep models for semantic compositionality over a sentiment treebankC//Proceedings of the conference on empiri- cal methods in natural language processing (EMNLP). 2013 : 1631-1642.
  • 9Irsoy O, Cardie C. Deep Recursive Neural Networks for Compositionality in Language[-C//Proeeedings of the Advances in Neural Information Processing Sys- tems. 2014:2096 -2104.
  • 10Li P, Liu Y, Sun M. Recursive Autoencoders for ITG-Based Translation[C]//Proceedings of the EMN- LP. 2013: 567-577.

共引文献184

同被引文献43

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部