期刊文献+

基于HBase的交通数据时空分块索引 被引量:2

Spatio-temporal block index for traffic data based on HBase
下载PDF
导出
摘要 智能交通领域快速发展带来的海量交通数据已难以通过传统关系型数据库及时处理。针对交通数据的分布特点与查询需求,提出了一种基于分布式数据库HBase的时空分块索引框架(STB-HBase),利用HBase行键设计结合二级索引的方式,解决数据在时空维度分布不均引起的热点问题,并设计出STB-HBase下的移动对象轨迹查询和时空范围查询算法。实验结果表明,STB-HBase对交通数据有良好的存储性能和查询效率。 The traditional relational database has been difficult to process the massive traffic data brought by the rapid development of intelligent transportation in time.Aiming at the distribution characteristics and query requirements of traffic data,a Spatio-Temporal Block indexing framework based on distributed database HBase(STB-HBase)is proposed.Designing HBase rowkey combined with the secondary index is used to solve the hotspot problem caused by the uneven distribution of data in spatial and temporal dimensions,and the two algorithms of moving object track query and spatio-temporal range query under STB-HBase are designed.The experimental results show that STB-HBase has good storage performance and query efficiency for traffic data.
作者 李攀宇 贾宏 LI Pan-yu;JIA Hong(No.15th Research Institute of China Electronics Technology Group Corporation,Beijing 100083,China)
出处 《信息技术》 2019年第12期116-120,共5页 Information Technology
关键词 交通数据 HBASE 时空索引 查询优化 traffic data HBase spatio-temporal index query optimization
  • 相关文献

参考文献8

二级参考文献38

  • 1钱景辉,廖锂.基于Keepalived的动态浮动IP集群实现[J].化工自动化及仪表,2012,39(7):926-928. 被引量:15
  • 2尹章才,李霖,王琤.基于HR-树扩展的时空索引机制研究[J].武汉大学学报(信息科学版),2007,32(12):1131-1134. 被引量:7
  • 3Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data//Proeeedings of the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Seattle, USA, 2006 : 205-218.
  • 4Lakshman A, Malik P. Cassandra--A decentralized struc- tured storage system. ACM SIGOPS Operating Systems Review, 2010, 44(2): 35-40.
  • 5DeCandia G, Hastorun D, Jampani M, et al. Dynamo: Amazon's highly available key-value store//Proeeedings of the 21st ACM Symposium on Operating Systems Principles. Stevenson, USA, 2007:205-220.
  • 6中国计算机学会大数据专家委员会.2013年中国大数据技术与产业发展白皮书,2013.
  • 7Sfakianakis G, Patlakas I, Ntarmos N, Triantafillou P. Interval indexing and querying on key-value cloud stores// Proceedings of the 29th IEEE International Conference on Data Engineering. Brisbane, Australia, 2013:805-816.
  • 8Bentley J L. Solutions to Klee' s rectangle problem. Technical Report, Carnegie-Mellon University, Pittsburgh, 1977.
  • 9Zou Yong-Qiang, Liu Jia, Wang Shi-Cai, et al. CCIndex: A complemental clustering index on distributed ordered tables for multi-dimensional range queries//Proceedings of the Network and Parallel Computing. Zhengzhou, China, 2010:247-261.
  • 10Feng Chen, Zou Yong-Qiang, Xu Zhi-Wei. CCIndex for cassandra: A novel scheme for multi-dimensional range queries in cassandra//Proceedings of the 7th International Conference on Semantics, Knowledge and Grid. Beijing, China, 2011:130 136.

共引文献104

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部