期刊文献+

基于改进小波阈值-SVM的齿轮故障信号识别 被引量:7

Gear Fault Signal Recognition Based on Improved Wavelet Threshold-SVM
下载PDF
导出
摘要 针对在齿轮疲劳试验中需要多次停机拍照的问题,提出基于改进的小波域阈值降噪方法,对采集的齿轮啮合的声发射信号分析,并提取特征矢量作为支持向量机的输入特征向量,识别出故障信号,根据齿轮旋转周期,确定缺陷轮齿。与开箱拍照的记录进行对比,计算得出的问题轮齿和照片记录吻合。该方法减少了因停机拍照造成的齿轮工作数据采集不准确的问题,同时也减少了工作人员的工作量,在后续的实验中该方法得到了有效的应用。 Aiming at the problem that the gear needed to be stopped for many times to take pictures in gear fatigue test,an improved wavelet domain threshold denoising method was proposed,the acoustic emission signal of the meshing gear was analyzed and processed,and the feature vector was extracted as the input feature vector of the support vector machine,and the identified fault signal was used to determine the defective gear teeth according to the gear rotation period.Compared with the records of photos taken after unpacking,defective gear teeth which were calculated finally coincided with the photo records.The method reduces the influence of inaccurate data collection of gears caused by shutdown and taking pictures,and also reduces the workload of workers,and the method has been effectively applied in subsequent experiments.
作者 王康 贺敬良 耿开贺 陈勇 韩福宁 WANG Kang;HE Jingliang;GENG Kaihe;CHEN Yong;HAN Funing(School of Electromechanical Engineering,Beijing Information Science&Technology University,Beijing 100192,China;Collaborative Innovation Center of Electric Vechicles in Beijing,Beijing 100192,China;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《机床与液压》 北大核心 2019年第22期174-177,共4页 Machine Tool & Hydraulics
基金 科技创新服务能力建设-科研基地建设-新能源汽车北京实验室(市级)(PXM2017_014224_000005_00249684_FCG)
关键词 小波阈值 声发射 SVM 故障识别 Wavelet threshold Acoustic emission(AE) Support vector machine(SVM) Fault identification
  • 相关文献

参考文献6

二级参考文献72

  • 1于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 2黄伟力,黄伟建,王飞,杜巍.机械设备故障诊断技术及其发展趋势[J].矿山机械,2005,33(1):66-68. 被引量:47
  • 3李春华,肖洋,刘绍东.基于SOM神经网络的矿井提升机减速器齿轮故障诊断[J].矿山机械,2007,35(8):92-94. 被引量:5
  • 4ABBASION S,RAFSANJANI A,FARSHIDIANFAR A,et al.Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J].Mechanical Systems and Signal Processing,2007,21 (7):2933-45.
  • 5WIDODO A,YANG B S.Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Expert Systems with Applications,2007,33 (1):241-50.
  • 6KANKAR P,SHAMA S C,HARSHA S.Fault diagnosis of ball bearings using continuous wavelet transform[J].Applied Soft Computing,2011,11 (2):2300-2312.
  • 7YANG Y,YU DJ,CHENG J.A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J].Measurement,2007,40(9):943-50.
  • 8CUI P L,LI J H,WANG G Z.Improved kernel principal component analysis for fault detection.Expert Systems with Applications,2008,34(2):1210-1219.
  • 9LEE J M,YOO C K,LEE I B.Statistical process monitoring with independent component analysis.Journal of Process Control,2004,14(5):467-485.
  • 10LEE J M,YOO C K,LEE I B.Statistical monitoring of dynamic processes based on dynamic independent component analysis.Chemical Engineering Science,2004,59 (14):2995-3006.

共引文献171

同被引文献74

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部