期刊文献+

基于联合特征映射的端到端三维模型草图检索 被引量:8

Joint Feature Mapping for End-to-End Sketch-Based 3D Model Retrieval
下载PDF
导出
摘要 在草图-三维模型检索任务中,草图具有类内多样性,三维模型具有复杂性,且草图-三维模型之间存在巨大的域间的差异性,这些特点的相互作用使得基于草图的三维模型检索任务变得特别困难.针对这一问题,提出一种基于联合特征映射的端到端三维模型草图检索框架.首先将三维模型转化为一组二维视图,建立跨域数据的共享数据空间;然后通过网络权值共享,建立端到端的三元度量学习网络,实现跨域数据草图和视图的联合特征映射;最后基于联合特征分布,提出4种草图-三维模型相似评价算法来实现草图-三维模型的检索.在大型公共数据集SHREC2013和SHREC2014上的检索精度分别为81.8%和75.6%,比现有算法在7项检索指标PR曲线,NN,FT,ST,E,DCG和MAP上都有所提升,检索性能突出. Sketch based 3D model retrieval has the characteristics including diversity of intra-class sketches,complexity of the 3D models,and the huge inter-domain differences between the sketches and 3D models.The interaction of these characteristics makes the sketch-based 3D model retrieval task becomes particularly difficult.To solve the problem,an end-to-end sketch-3D model retrieval framework based on joint feature mapping is proposed.Firstly,the 3D model is transformed into a set of 2D views to establish the shared data space of cross-domain data.Then,through network weight sharing,the end-to-end triplet metric learning network is established,and the joint feature mapping of the cross-domain data,sketches and views,is realized.Finally,based on the joint feature distribution,four kinds of similarity evaluation algorithms between sketches and 3D models are proposed to realize sketch based 3D model retrieval.The retrieval precisions in the large public data sets SHREC2013 and SHREC2014 are 81.8%and 75.6%,respectively,and have demonstrated that the algorithm in this paper is better than the state-of-the art methods in seven indexes of PR curve,NN,FT,ST,E,DCG and MAP.
作者 白静 孔德馨 周文惠 王梦杰 Bai Jing;Kong Dexin;Zhou Wenhui;Wang Mengjie(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021;Ningxia Province Key Laboratory of Intelligent Information and Data Processing,Yinchuan 750021)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第12期2056-2065,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61762003,61502129) 宁夏高等学校一流学科建设(电子科学与技术:NXYLXK2017A07) 宁夏自然科学基金(2018AAC03124) 中国科学院”西部之光”人才培养引进计划 北方民族大学2019年重点科研项目(2019KJ27) 北方民族大学创新项目(YCX19059)
关键词 基于草图的检索 三维模型检索 联合特征分布 度量学习 深度学习 端到端网络 sketch-based retrieval 3D model retrieval joint feature distribution metric learning deep learning end-to-end network
  • 相关文献

参考文献4

二级参考文献13

  • 1David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 2Thomas Funkhouser,Patrick Min,Michael Kazhdan,Joyce Chen,Alex Halderman,David Dobkin,David Jacobs.A search engine for 3D models[J]. ACM Transactions on Graphics (TOG) . 2003 (1)
  • 3Bo Li,Yijuan Lu,Afzal Godil,Tobias Schreck,Benjamin Bustos,Alfredo Ferreira,Takahiko Furuya,Manuel J. Fonseca,Henry Johan,Takahiro Matsuda,Ryutarou Ohbuchi,Pedro B. Pascoal,Jose M. Saavedra.A comparison of methods for sketch-based 3D shape retrieval[J]. Computer Vision and Image Understanding . 2014
  • 4Mathias Eitz,Ronald Richter,Tamy Boubekeur,Kristian Hildebrand,Marc Alexa.Sketch-based shape retrieval[J]. ACM Transactions on Graphics (TOG) . 2012 (4)
  • 5Doug DeCarlo,Adam Finkelstein,Szymon Rusinkiewicz,Anthony Santella.Suggestive contours for conveying shape[J]. ACM Transactions on Graphics (TOG) . 2003 (3)
  • 6S.M.Yoon,M.Scherer,T.Schreck,A.Kuijper.Sketch-based3D model retrieval using diffusion tensor fields of suggestive contours. ACM international conference on Multimedia . 2010
  • 7Furuya T,Ohbuchi R.Ranking on cross-domain manifold for sketch-based 3D model retrieval. IEEE International Conference on Cyberworlds . 2013
  • 8Bin Xu,Jiajun Bu,Chun Chen.Efficient Manifold Ranking for ImageRetrieval. The34th international ACM SIGIR conference on Research anddevelopment in information retrieval . 2011
  • 9Zhou D,Weston J,Gretton A,Bousquet O,Schlkopf B.Ranking on Data Manifolds. Advances in Neural Information Processing Systems . 2003
  • 10Zou C,Wang C,Wen Y,et al.Viewpoint-Aware Representation for Sketch-Based 3D Model Retrieval. IEEE Signal Processing Letters . 2014

共引文献22

同被引文献51

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部