期刊文献+

一种改进的Apriori算法在精准扶贫中的应用研究 被引量:3

An Application Research of an Improved Apriori Algorithm in Targeted Poverty Alleviation
下载PDF
导出
摘要 随着精准扶贫建档立卡工作的实施,精准扶贫系统已积累了大量数据,利用高效的关联规则算法挖掘其中隐含的有用信息对助力精准扶贫工作具有重要意义。本文针对贫困户建档立卡数据的数据重复率高,属性多样特点,提出一种改进的Apriori算法,利用对矩阵的数据结构和集合的相关性质来构建候选项集,避免重复扫描数据库以及逐层的剪枝连接运算,提高算法挖掘效率;通过对实际贫困户建档立卡数据进行挖掘,证明了该算法在最小支持度阈值较低的条件下挖掘效率优于传统Apriori算法。 With the implementation of the targeted poverty alleviation archiving work,the targeted poverty alleviation system has accumulated a larger amount of data.It is of great significance to use efficient association rules algorithm to mine the hidden useful information.The text aims at the characteristics of high repetition rate and diverse attributes of archived card data of poor households.An improved Apriori algorithm is proposed to construct candidate item sets by utilizing the data structure of the matrix and the relevant properties of the set,so as to avoid repeated scanning of the database and pruning connection operation layer by layer,so as to improve the efficiency of algorithm mining.By mining the data of the actual family in poverty,it is proved that the mining efficiency of this algorithm is better than traditional Apriori algorithm under the condition of low minimum support threshold.
作者 何庆 刘亮 HE Qing;LIU Liang(Institute of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《贵州大学学报(自然科学版)》 2019年第6期46-52,共7页 Journal of Guizhou University:Natural Sciences
基金 贵州省科技计划项目重大专项资助(黔科合重大专项字[2016]3022,黔科合重大专项字[2018]3002) 贵州省公共大数据重点实验室开放课题资助(2017BDKFJJ004,2017BDKFJJ034) 贵州省教育厅青年科技人才成长项目资助(黔科合KY字[2016]124)
关键词 关联规则 频繁项集 精准扶贫 APRIORI算法 association rules candidate item sets targeted poverty alleviation Apriori algorithm
  • 相关文献

参考文献12

二级参考文献137

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2汪三贵,Albert Park,Shubham Chaudhuri,Gaurav Datt.中国新时期农村扶贫与村级贫困瞄准[J].管理世界,2007,23(1):56-64. 被引量:190
  • 3彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 4Ilayaraja M,Meyyappan T.Mining medical data to identify frequent diseases using Apriori algorithm[C]//2013 International Conference on Pattern Recognition,Informatics and Mobile Engineering(PRIME),2013:194-199.
  • 5Kantardzic M.数据挖掘:概念、模型、方法和算法[M].王晓海,吴志刚.译.2版.北京:清华大学出版社,2013:1-13.
  • 6Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases.Proceedings of ACMSIGMOD Conference on Management of Data,1993:207-216.
  • 7Park J S,Chen M S,Yu P S.An effective Hash-based algorithm for mining association rules[C]//Proceedings of ACM SIGMOD International Conference on Management of Data,1995:175-186.
  • 8Prashant V,Mandot M.A comparative analysis of various cluster detection techniques for data mining[C]//2014 International Conference on Electronic Systems,Signal Processing and Computing Technologies,2014:357-361.
  • 9Yang X, Ghoting A, Ruan Y, et al. A framework for summarizing and analyzing Twilter feeds [C] //Proc of the 18th ACM SIGKDD lnt Conf on Knowledge Discovery and Data Mining (KDD'12). New York: ACM, 2012:370-378.
  • 10Zhang X, Zhu S, Liang W. Detecting spare and promoting campaigns in the Twitter social network [C] //Proc of the 12th IEEE Int Conf on Data Mining (ICDM'12). Los Alamitos, CA: IEEEComputer Society, 2012:1194-1199.

共引文献142

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部