摘要
桥梁监测工程中,数据累积的问题日渐显现,对数据进行及时快速的处理甚为重要。作为新兴的现代化大数据处理技术,数据挖掘可以从数据库中发现隐含的、有意义的知识模式,可以反映不同事物之间的属性差别。引入数据挖掘中的聚类分析进行桥梁监测数据的异常判别,并设定合理阈值作为剔除异常监测数据的依据,为海量监测数据的处理提供了一条可靠道路。
In bridge monitoring,the problem of data accumulation is more and more obvious,it is very important to deal with the data in time.As a new technology of big data processing,data mining can discover implied and meaningful knowledge patterns from the database,which reflect the difference of attributes between different things.In this paper,cluster analysis in data mining is introduced to distinguish the anomaly of bridge monitoring data,and a reasonable threshold is set as the basis of eliminating abnormal monitoring data,which provides a reliable way for the processing of massive monitoring data.
作者
李西芝
胡靖
LI Xi-zhi;HU Jing(China Design Group,Nan Jing 210014;Intelligent Transportation System Research Center,Southeast University,Nan Jing 210096)
出处
《黑龙江交通科技》
2019年第12期88-90,92,共4页
Communications Science and Technology Heilongjiang
基金
江苏省交通运输科技项目(2016Y12)