期刊文献+

概率神经网络在物质浓度辨识中的应用

Application of probabilistic neural network in material concentration recognition
下载PDF
导出
摘要 提出了基于概率神经网络的物质浓度辨识方法,以二氧化硫在不同浓度下颜色读数的数据为例,建立概率神经网络的物质浓度辨识模型。实验仿真表明,概率神经网络物质浓度辨识模型具有收敛速度快、物质浓度辨识正确率高、容易训练等特点。 In this paper, a method of material concentration recognition based on probabilistic neural network is proposed. Take the color reading of sulfur dioxide at different concentrations as an example, establishing a material concentration recognition model of probabilistic neural network. Through experimental simulation shows, PNN material concentration recognition model have features like fast convergence, material concentration recognition high accuracy rate, easy to train, and so on.
作者 王洋 王咏 WANG Yang;WANG Yong(Department of Public Teaching,Sichuan Vocational and Technical College of Communications,Chengdu 611130,China)
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2019年第6期29-32,共4页 Journal of Foshan University(Natural Science Edition)
基金 全国交通运输职业教育教学指导委员会交通运输职业教育科研项目(2017B03)
关键词 概率神经网络 物质浓度 辨识 PNN material concentration recognition
  • 相关文献

参考文献2

二级参考文献13

  • 1黄德双,保铮.基于径向基函数网络的雷达目标一维像识别技术研究[J].电子科学学刊,1995,17(1):26-34. 被引量:6
  • 2Specht D F. Probabilistic neural network[J]. Neural Network, 1990, 3(2): 109-118.
  • 3Tyree Erie W, Long J A. Assessing financial distress with probabilistic neural network[A]. Proceedings of the Third International Conference on Neural Networks in the Capital Market[C]. 1995.
  • 4Yang Z Y, Marjorie B. Platt and Harlan D. Platt. Probabilistic neural networks in bankruptcy prediction[J]. Journal of Business Research, 1999, 44:67 - 74.
  • 5Hajmeer M, Basheer I. A probabilistic neural approach for modeling and classification of bacterial growth/no-growth data[J]. Joural of Microbiological Methods. 2002, 51: 217 - 226.
  • 6Laurent Simon M. Nazmul Karim. Probabilistic neural network using Bayesian decision strategies and a modified gompertz model for growth phase classification in the batch culture of bacillus subtilis[J]. Biochemical Engineering Journal. 2001, 7:41-48.
  • 7Hugo Guterman, Youval Nehmadi, Andrei Chisyakov, Jean F. Soustiel, Moshe Feinsod. A comparison of neural network and bayes recognition approachs in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis[J] . International Journal of Bio-Medical Computing, 1996, 43: 203 - 213.
  • 8吴微,陈维强,刘波.用BP神经网络预测股票市场涨跌[J].大连理工大学学报,2001,41(1):9-15. 被引量:91
  • 9孙丹,张秀艳.基于人工神经网络的股市预测模型[J].吉林大学学报(信息科学版),2002,20(4):68-70. 被引量:16
  • 10庞素琳,王燕鸣.多层感知器信用评价模型研究[J].中山大学学报(自然科学版),2003,42(4):118-122. 被引量:14

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部