期刊文献+

基于GoogLeNet的智能录播系统中站立人脸的检测与定位 被引量:3

Detection and Location of Standing Faces in Intelligent Recording and Broadcasting System Based on GoogLeNet
下载PDF
导出
摘要 针对目前智能录播系统中学生站立检测的需求,提出一种基于GoogLeNet神经网络的站立人脸的检测与定位算法。该算法首先利用帧差法和肤色检测初步确定学生站立活动区域,然后在该区域使用迁移学习训练的GoogLeNet神经网络检测是否存在人脸,若存在,则记录人脸的位置信息,最后通过人脸在垂直方向和水平方向上的运动距离来判断是否为站立的学生人脸。实验结果表明,本文方法基本可以实现学生站立人脸的检测与定位功能。 Aiming at the demand of students’standing detection in intelligent recording and broadcasting system,this paper implements a detection and localization algorithm based on GoogLeNet neural network.The algorithm firstly uses the frame difference method and skin color detection to initially determine the student’s standing activity area,and then uses the GoogLeNet neural network of the migration learning training to detect whether there is a face in the area.If it exists,the position information of the face is recorded.The distance between the vertical direction and the horizontal direction is used to determine whether it is a standing student’s face.The experimental results show that the method can basically realize the detection and location function of students standing face.
作者 衣柳成 魏伟波 刘小芳 YI Liu-cheng;WEI Wei-bo;LIU Xiao-fang(Coikge of Computer Science,Technology,Qingdao University,Qingdao 266071,China)
出处 《青岛大学学报(自然科学版)》 CAS 2019年第4期91-95,共5页 Journal of Qingdao University(Natural Science Edition)
关键词 GoogLeNet 卷积神经网络 人脸检测 智能录播系统 GoogLeNet Convolutional Neural Network intelligent recording system face detection
  • 相关文献

参考文献12

二级参考文献94

  • 1宋晓阳,姜小三,江东,黄耀欢,万华伟,王昌佐.基于面向对象的高分影像分类研究[J].遥感技术与应用,2015,30(1):99-105. 被引量:20
  • 2李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 3高建坡,王煜坚,杨浩,吴镇扬.一种基于KL变换的椭圆模型肤色检测方法[J].电子与信息学报,2007,29(7):1739-1743. 被引量:15
  • 4[1]Cai J, Goshtasby A. Detecting Human Faces in Color Images. Image and Vision Computing, 1999,18(1): 63-75
  • 5[2]Yang G Z, Huang T S. Human Face Detection in a Complex Backgro- und. Pattern Recognition, 1994, 27(1): 53-63
  • 6[3]Brunelli R, Poggio T. Face Recognition: Features Versus Templates. IEEE Trans Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 7[4]Rowley H A, Baluja S, Kanade T. Neural Network-based Face Detection. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-38
  • 8Cai J, Goshtasby A. Detecting human faces in color images [J].Image and Vision Computing, 1999, 18 (1): 63-75.
  • 9Yang G Z, Huang T S. Human face detection in a complex background [J]. Pattern Recognition, 1994, 27 (1): 53-63.
  • 10Brunelli R, Poggio T. Face recognition:features versus templates[J]. IEEE: Trans Pattern Analysis and Machine Intelligence,1993, 15 (10): 1042-1052.

共引文献1879

同被引文献29

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部