期刊文献+

一种高效安全外包求解大型模线性系统的算法

A High-efficiency and Secure Outsourcing Algorithm for Large-scale Modular Systems of Linear Equations
下载PDF
导出
摘要 在安全外包计算的基础上,提出了一种新颖的基于稀疏幺模矩阵加密的安全外包算法。克服了不外包情况下,计算能力有限的客户端想要独立完成大规模计算,受限于其资源约束型设备的困难。适用于有解情况下,通过云计算求解大型模线性方程组Ax≡bmodq。该方案基于客户端-边缘云-公有云的三方计算模型,能够很好的保护客户端的I/O隐私,大大提高了客户端的计算效率,并以概率1验证计算结果。理论分析和实验结果均证明了该方案的安全性和有效性。 On the basis of secure outsourcing computing,a new secure outsourcing algorithm based on sparse unimodular matrix encryption is proposed.It overcomes the difficulty that clients with limited computing power want to complete large-scale computing independently without outsourcing,which is limited by their resource constrained devices.It is suitable for solving large-scale modular linear equations by cloud computing.Based on the client-edge cloud-public cloud tripartite computing model,this scheme can protect the I/O privacy of the client,greatly improve the computing efficiency of the client,and verify the computing results with probability 1.Theoretical analysis and experimental results show that the scheme is safe and effective.
作者 孟盼盼 赵英杰 MENG Pan-pan;ZHAO Ying-jie(College of Computer Science and Technology,Qingdao University,Qingdao 266071,China;Naval staff Combat Service Support Group of Northern Theater,Qingdao 266000,China)
出处 《青岛大学学报(自然科学版)》 CAS 2019年第4期96-100,共5页 Journal of Qingdao University(Natural Science Edition)
关键词 云计算 模线性方程组 安全外包计算 cloud Computing large scale system of modular linear equations secure outsourcing computition
  • 相关文献

参考文献3

二级参考文献29

  • 1Sun Microsystems, Inc. Building customer trust in cloud computing with transparent security. 2009. https://www.sun. com/offers/det ails/sun_transparency.xml.
  • 2Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. Maryland, 2009. 169-178.
  • 3Gentry C. Toward basing fully homomorphic encryption on worst-case hardness. In: Proceedings of the 30th Annual Cryptology Conference. Santa Barbara, 2010. 116-137.
  • 4van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over integers, In: Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Riviera, 2010. 24-43.
  • 5Smart N P, Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Pro- ceedings of the 13th International Conference on Practice and Theory in Public Key Cryptography. Paris, 2010. 420-443.
  • 6Stehle D, Steinfeld R. Faster fully homomorphic encryption. In: Proceedings of the 16th International Conference on the Theory and Application of Cryptology and Information Security. Singapore, 2010. 377-394.
  • 7Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. In: Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Riviera, 2010. 1-23.
  • 8Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS). Palm Springs, 2011. 97-106.
  • 9Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Proceedings of the 31st Annual Cryptology Conference. Santa Barbara, 2011. 501-521.
  • 10Benjamin D, Atallah M J. Private and cheating-free outsourcing of algebraic computations. In: Proceedings of the 6th Conference on Privacy, Security, and Trust (PST). New Brunswick, 2008. 240 -245.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部