期刊文献+

基于局部熵拟合能量与全局信息的活动轮廓模型 被引量:2

Active Contour Model Based on Local Entropy Fitting Energy and Global Information
下载PDF
导出
摘要 为解决活动轮廓模型在分割灰度不均匀的图像时存在的对初始轮廓位置敏感、参数选取繁琐及迭代次数多等问题,构建一种基于局部熵拟合能量与全局信息的改进活动轮廓模型。选取灰度图像的中心作为水平集初始轮廓的中心点,改变轮廓半径的大小以确定初始轮廓的位置。使用局部熵项来增强图像边缘处的响应,将局部熵图像拟合能量项与RSF模型共同构成局部能量项,并引入图像的全局信息来避免陷入局部极小值。在此基础上,修正正则项中的长度项,以提高图像分割的效率。在灰度不均匀的合成图像及真实医疗图像上的实验结果表明,与CV模型、RSF模型相比,该模型在进行图像分割时迭代次数较少,精度较高。 Active contour model is very important in image segmentation.However,when dealing with images with intensity inhomogeneity,this model is sensitive to the initial contour position,and its cumbersome selection and multiple iterations can also cause problems.To address these problems,this paper proposes an active contour model based on local entropy fitting energy and global information.Firstly,we select the intensity image center as the central point of the level set of initial contour,and change the radius size to determine its location.Then,we use the local entropy to enhance the response from the image edge,and combine the local entropy image fitting energy and RSF model together as local energy terms.Besides,the global information of image is added to avoid falling into local minimum.On this basis,we amend the length in the regular terms to improve the segmentation efficiency.Experiments on synthetic images and real medical images with intensity inhomogeneity show that the proposed model has fewer segmentation iterations,and the results are more accurate.
作者 王燕 段亚西 WANG Yan;DUAN Yaxi(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第12期207-213,221,共8页 Computer Engineering
关键词 活动轮廓模型 局部熵 图像分割 灰度不均匀图像 全局信息 active contour model local entropy image segmentation intensity inhomogeneity image global information
  • 相关文献

参考文献2

二级参考文献11

  • 1朱立新,欧阳晓丽,夏德深.基于伪线性方向扩散方程的指纹图像增强[J].模式识别与人工智能,2006,19(6):806-811. 被引量:5
  • 2Perona P, Malik J. Scale-Space and Edge Detection Using Aoiso- tropic Diffusion. IEEE Trans on Pattern Analysis and Machine Intel- ligence, 1990, 12(7): 629-639.
  • 3Black M J, Sapiro G, Marimont D H. Robust Anisotropic Diffusion. IEEE Trans on Image Processing, 1998, 7 (3) : 421-432.
  • 4Chao S M, Tsai D M. Astronomical Image Restoration Using an Improved Anisotropic Diffusion. Pattern Recognition Letters, 2006, 27 ( 5 ) : 335-344.
  • 5Chao S M, Tsai D M. Anisotropic Diffusion with Generalized Diffu- sion Coefficient Function for Defect Detection in Low-Contrast Sur- face Images. Pattern Recognition, 2010, 43 (5) : 1917-1931.
  • 6Alvarez L, Lion P L, Morel J M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion 11. SIAM Journal on Numeri- cal Analysis, 1992, 29(3): 845-866.
  • 7Catte F, Lion P L, Morel J M, et al. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. SlAM Journal on Numerical Analysis, 1992, 29(1): 182-193.
  • 8Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart, Germany: Teubner-Verlag, 1998.
  • 9Gilboa G, Soehen N, Zeevi Y. Forward-and-Backward Diffusion Processes for Adaptive Image Enhancement and Denoising. IEEE Trans on Image Process, 2002, 11 ( 7 ) : 689-703.
  • 10Chao S M, Tsai D M. An Improved Anisotropic Diffusion Model for Detail-and Edge-Preserving Smoothing. Pattern Recognition Let- ters, 2010, 31 (13): 2012-2023.

共引文献13

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部