期刊文献+

基于AdaBoost算法的回放语音检测研究

Research on Playback Speech Detection Based on AdaBoost Algorithm
下载PDF
导出
摘要 针对语音判别系统中单个分类器分类能力有限的问题,提出一种基于AdaBoost算法的回放语音检测方法。以常量Q倒谱系数和均值超矢量分别作为特征参数和AdaBoost算法的输入,将多个分类器的检测结果相结合并进行加权投票,从而降低系统的等错误率(EER)。研究关系因子、均值超矢量维数以及弱分类器数量对检测结果的影响,以设置系统的最优参数。实验结果表明,该检测方法在开发集和评估集上的EER值分别为4.17%和16.81%,相比GMM-ML方法分别降低了65%和44%。 To address the limited classification ability of a single classifier in speech recognition system,this paper proposes a playback speech detection method based on AdaBoost.In this method,the constant Q cepstrum coefficient is taken as the characteristic parameter,and the mean supervector is taken as the inputs of characteristic parameter and AdaBoost algorithm respectively.Then,this paper combines the detection results of multiple classifiers for weighted voting,thus reducing the Equal Error Rate(EER)of the system.Further,this paper studies the effects of relationship factor,mean supervector dimension and the number of weak classifiers on the detection results,so as to set the optimal parameters of the system.Experimental results show that the EER values of the proposed method in development set and evaluation set are 4.17%and 16.81%respectively,which are 65%and 44%lower than those of the GMM-ML method.
作者 贾甜博 蒋晔 JIA Tianbo;JIANG Ye(College of Information Engineering,Nanjing University of Finance and Economics,Nanjing 210023,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第12期263-266,273,共5页 Computer Engineering
基金 江苏省自然科学基金青年基金(BK20150987)
关键词 自动说话人确认 回放语音检测 ADABOOST算法 均值超矢量 加权投票 Automatic Speaker Verification(ASV) playback speech detection AdaBoost algorithm mean supervector weighted voting
  • 相关文献

参考文献3

二级参考文献25

  • 1张利鹏,曹犟,徐明星,郑方.防止假冒者闯入说话人识别系统[J].清华大学学报(自然科学版),2008,48(S1):699-703. 被引量:13
  • 2吴尊敬,曹志刚.Improved MFCC-Based Feature for Robust Speaker Identification[J].Tsinghua Science and Technology,2005,10(2):158-161. 被引量:7
  • 3Reynolds D A,Rose R C.Robust text-independent speaker identification using Gaussian mixture speaker models[J].IEEE Transactions on Speech and Audio Processing,1995,3(1):72-83.
  • 4Reynolds D A.Speaker identification and verification using Gaussian mixture speaker model[J].Speech Communication,1995,17:91-108.
  • 5You K H.Wang H C.Joint estimation of feature transformation parameters and Gaussian mixture model for speaker identification[J].Speech Communication,1999,28:227-241.
  • 6Jim Z C.Improvement of the K-means clustering filtering algorithm[J].Pattern Recognition,2008,41 (12):3677-3681.
  • 7Reynolds D A,Thomas F.Speaker verification using adapted Gaus-sian mixture models[J].Digital Signal Processing,2000,10 (1-3):19-41.
  • 8Bimbot F, Bonastre J, Fredouille C,et al. A tutorial on text-independent speaker verification[J]. EUR- ASIP Journal on Applied Signal Processing, 2004, 4: 430-451.
  • 9Reynolds D A, Quatieri T, Dunn R. Speaker verifica- tion using adapted gaussian mixture models[J]. Digit- al Signal Processing,2000, 10(1-3) :19-41.
  • 10Kenny P, Boulianne G, Ouellet P, et al. Speaker and session variability in GMM-based speaker verification [J]. Audio, Speech, and Language Processing, IEEE Transactions, 2007, 15(4):1448- 1460.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部