期刊文献+

板栗疫病菌RasGAP基因的功能研究

Functional Study of RasGAP Gene in Chestnut Blight Fungus
原文传递
导出
摘要 Ras超家族蛋白的生化功能是催化GTP的水解,为生命体提供能量。RasGAP是Ras蛋白激活子,可提高Ras蛋白对GTP的水解能力。本研究利用同源双交换的方法成功构建了板栗疫病菌RasGAP基因的缺失突变株ΔRasGAP。与野生型菌株EP155及敲除出发菌株Δcpku80相比,ΔRasGAP突变体的菌丝形态、漆酶分泌、致病力和对低毒病毒复制的支持均无明显变化。但ΔRasGAP的生长速度加快,色素分泌延迟,分生孢子产量也显著下降。mRNA定量分析表明,RasGAP基因的缺失导致产孢相关基因的转录模式发生明显改变,提示RasGAP是板栗疫病菌分生孢子形成的一个重要调控因子。本研究为揭示板栗疫病菌产孢机制提供了新的知识。 The Ras superfamily protein provides energy to the living body by catalyzing the hydrolysis of GTP.RasGAP is a Ras protein activator,which can enhance the hydrolytic capacity of Ras protein.In this study,the C.parasitica RasGAP gene deletion strainΔRasGAP was constructed successfully by homologous recombination.Compared to the wild strain EP155 and the knock-out original strainΔcpku80,the mycelial morphology,laccase secretion,virulence and virus accumulation of RasGAP null mutant did not obviously change.However,theΔRasGAP mutants showed a phenotype of faster growth rate,delayed orange pigmentation and lower level of sporulation.Besides,transcriptional analysis showed that deletion of RasGAP influenced the transcript accumulation level of four sporulation-related genes,indicating that RasGAP is an important regulatory factor for the formation of conidia of C.parasitica.This work provides a novel knowledge for further studying mechanisms of the sporulation in C.parasitica.
作者 李洋 林榆淞 李永兵 陈保善 李茹 Li Yang;Lin Yusong;Li Yongbing;Chen Baoshan;Li Ru(College of Life Science and Technology,Guangxi University,Nanning,530004;State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,Nanning,530004)
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2019年第10期4504-4512,共9页 Genomics and Applied Biology
基金 国家自然科学基金(31560043和31760498)的资助
关键词 板栗疫病菌 RASGAP 基因 产孢 产色素 Cryphonectria parasitica RasGAP Sporulation Pigment
  • 相关文献

参考文献2

二级参考文献49

  • 1Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans[J]. Microbial Mol Boil Rev, 1998,62(1): 35-54.
  • 2Kolmark HG. Mutants with continuous microcycle conidiation in the filamentous fungus Fusarium solani f. sp. pisi[J]. Mol Gen Genet, 1984(198): 12-18.
  • 3Anderson JG, Smith JE. The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation)[J]. J Gen Microbiol, 1971(69): 185 197.
  • 4Hanlin RT. Microcycle conidiation-a review[J]. Mycoscience, 1994(35): 113-123.
  • 5Lapaire CL, Dunkle LD. Microcycle conidiation in Cercospora zeaemaydis[J]. Phytopathology, 2003(93): 93-199.
  • 6Maheshwari R. Microcycle conidiation and its genetic basis in Neurospora crassa[J]. J Gen Microbiol, 1991(137): 2103-2115.
  • 7Liu J, Cao YQ, Xia YX. Mmc, a gene involved in microcycle conidiation of the entomopatgenic fungus Metarhizium anisopliae[J]. Journal of Invertebrate Pathology, 2010(15): 132-138.
  • 8De Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types[J]. Biol Control, 2007(43): 237-256.
  • 9St. Leger RJ, Wang CS. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests[J]. Appl Microbiol Biotechnol, 2010(85): 901-907.
  • 10Zhang SZ, Xia YZ. Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization[J]. FEMS Microbiol Lett, 2008(286): 71-77.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部