期刊文献+

过热液体中蒸汽泡上升过程的格子Boltzmann三维数值模拟 被引量:5

Three-dimensional Numerical Simulation of Vapor Bubble Rising in Superheated Liquid by Lattice Boltzmann Method
原文传递
导出
摘要 应用格子Boltzmann相变模型,在三维空间研究蒸汽泡在过热液体中生长、上升和变形等动力学行为.为研究传热传质对蒸汽泡运动的影响,对比模拟相同条件下气泡在等温环境中上升的物理过程.结果表明:蒸汽泡在过热液体中上升发生的变形程度较小,意味着相变对蒸汽泡的影响和表面张力一样使汽泡保持初始的形状.蒸汽泡在过热液体中的上升速度较小,说明随着汽泡生长拖拽力的影响比浮力大.蒸汽泡生长率在初始阶段达到最大值,随后会趋于一个恒定的值.随着汽泡体积增大和上升速度的增加,其对流场的扰动也越来越剧烈.蒸汽泡生长和上升引起的对流运动对温度场的演化造成很大的影响. Dynamics behavior of a vapor bubble such as rising,growth and deformation in superheated liquid was simulated with three-dimensional lattice Boltzmann phase-change model.To study effect of heat and mass transfer on vapor bubble,process of bubble rising in isothermal system was simulated.It shows that deformation extent of vapor bubble is small in superheated liquid.It is suggested that the effect of phase-change on vapor bubble is similar to surface tension force,which makes vapor bubble tend to keep its initial shape.Rising velocity of vapor bubble in superheated liquid was smaller.It implied that the effect of drag force on vapor bubble was dominant in superheated situation.In addition,growth rate of vapor bubble reaches the maximum at initial stage;Then it tended to nearly a constant.As vapor bubble volume and velocity increase,influence of disturbance on flow field is more and more intense.Meanwhile,growth of vapor bubble and convection induced by bubble rising have great impact on evolution of temperature field.
作者 孙涛 刘志斌 范伟 秦海杰 SUN Tao;LIU Zhibin;FAN Wei;QIN Haijie(College of Civil Engineering,Dalian Nationalities University,Dalian,Liaoning 116650,China)
出处 《计算物理》 EI CSCD 北大核心 2019年第6期659-664,共6页 Chinese Journal of Computational Physics
基金 国家自然科学基金(51706035) 中央高校基本科研业务费(wd01125)资助项目
关键词 过热液体 蒸汽泡 格子BOLTZMANN方法 动力学特性 传热传质 superheated liquid vapor bubble lattice Boltzmann method dynamics characteristic heat and mass transfer
  • 相关文献

参考文献1

二级参考文献15

  • 1Haberman W L, Morton R K. An experimental study ofbubbles moving in liquids [ J ]. Tra?isactio?is of theAmerican Society of Civil Engineers, 1954, 121 ( 1 ) .227-250.
  • 2Hnat J G, BuckmastcrJ D. Spherical cap bubbles and skirtformation [J]. Phyxics of Fluids? 1976 , 19: 182.
  • 3Bhaga D, Weber M E. Bubbles in viscous liquids: shapes,wakes and velocities [ J ]. Journal of Fluid Mechanics ,1981, 105 (1): 61-85.
  • 4Manga M, Stone H A. Collective hydrodynamics ofdeformable drops and bubbles in dilute low Reynolds numbersuspensions [J]. Journal of Fluid Mechanics , 1995. 300(1); 231-263.
  • 5Rothman D H,Keller J M. Immiscible ccllular-automationfluids [J]. Journal of Statistical Physics . 1988, 52 (3):1119-1127.
  • 6Gnnstensen A K. Rothman D H, Zaleski S. LatticeBoltzmann model of immiscible fluids [J]. Physical ReviewA, 1991. 43 (8): 4320-4327.
  • 7Shan X, Doolen G. Multicomponent lattice-Boltzmannmodel with interparticle interaction [ J ]. Journal ufStatistical Physics, 1995,81 (1); 379-393.
  • 8Shan X, He X. Discretization of the velocity space in thesolution of the Boltzmann equation [J]. Physical RevieivLetters , 1998 80 (1) : 65-68.
  • 9Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmannsimulation of nonideal fluids [J]. Physical Revien' Letters .1995, 75 (5): 830-833.
  • 10Zheng H W, Shu C, Chew Y T. Lattice Boltzmanninterface capturing method for incompressible flows [J].Physical Rexfiew E . 2005 , 72 (5): 353-371.

共引文献4

同被引文献26

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部