期刊文献+

Bifurcation and Stability Analysis in Complex Cross-Diffusion Mathematical Model of Phytoplankton-Fish Dynamics

原文传递
导出
摘要 In this paper,we propose a nonlinear reaction-diffusion system describing the interaction between toxin-producing phytoplankton and fish population.We analyze the effect of cross-diffusion on the dynamics of the system.The mathematical study of the model leads us to have an idea on the existence of a solution,the existence of equilibria and the stability of the stationary equilibria.Finally,numerical simulations performed at two-dimensions allowed us to establish the formation of spatial patterns and a threshold of release of the toxin,above which we talk about the phytoplankton blooms.
出处 《Journal of Partial Differential Equations》 CSCD 2019年第3期207-228,共22页 偏微分方程(英文版)
  • 相关文献

参考文献1

二级参考文献22

  • 1Turing A M 1952 Philos. Trans. R. Soc. London B 237 7
  • 2Ouyang Q and Swinney H L 1991 Nature 352 610
  • 3Li C P and Shen K 2003 Chin. Phys. 12 184
  • 4Gao Z Y and Lu Q S 2007 Chin. Phys. 16 2479
  • 5Hagberg A and Meron E 1994 Phys. Rev. Lett. 72 2494
  • 6Levin S A and Segel L A 1985 SIAM Rev. 27 45
  • 7Gandhi A, Levin S and Orszag S 1999 J. Theor. Biol. 200 121
  • 8Lee K J and Swinney H L 1995 Phys. Rev. E 51 1899
  • 9Lou Y and Ni W M 1999 J. Diff. Equa. 154 157
  • 10Dubey B, Das B and Hussain J 2001 Ecological Modelling 141 67

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部